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Adversarial Examples
Slightly perturbed images resembling natural images but maliciously crafted to fool trained models.

● Classification:

● Semantic Segmentation:
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Adversarial Examples
Universal Perturbations: Universal perturbations are fixed perturbations which when added to natural 
images can significantly degrade the accuracy of the pre-trained network 

Image-dependent Perturbations: Image-dependent perturbations can vary for different images in the 
dataset 
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Adversarial Examples
Targeted Attacks: We seek adversarial images that can change the prediction of a model to a specific 
target

Non-targeted Attacks: We want to generate adversarial examples for which the model’s prediction is any 
label other than the ground-truth

Targeted Attack Non-targeted Attack
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Problem Formulation

Non-targeted Perturbation:                         Targeted Perturbations:                             

 

Often intractable optimization problem 
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Optimization-based methods
● Intriguing Properties of Neural Networks (Szegedy et al. 2014)

● Towards Evaluating the Robustness of Neural Networks (Carlini et al. 2017)

Iteratively updates the perturbation to minimize the loss

Perform a search to find the best positive value for c

Advantage: Very good performance  -  Drawback: Slow at inference time
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Fast Gradient Sign Method (FGSM)
Uses a linear approximation of the loss function at the perturbed sample

Advantage: Fast computation (single forward and backward pass through the network)

Drawback: Linear approximation of the loss surface is not very accurate especially when the sample is far 

away from the decision boundary
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Iterative FGSM
Applies FGSM multiple times with smaller step sizes

Advantage: More accurate results (better approximation of the loss surface)

Drawback: Slow at inference time (requires multiple forward and backward passes through the network)  
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Our Approach: Image-dependent Perturbations
Using a generator to learn the perturbation from the input image 

Similar architecture can be used across different tasks (classification, segmentation, etc.)

Advantage: Fast at inference time (single forward pass through the generator)

Drawback: Needs to train an additional network
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Our Approach: Image-dependent Perturbations

Generator’s Loss Function:

● Non-targeted Attacks: 

● Targeted Attacks:
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Universal Perturbations 
● Universal Adversarial Perturbations (Dezfooli et al. 2017)

○ Creating the universal perturbation by adding image-dependent perturbations and scaling the 
result
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Our Approach: Universal Perturbations
Transforming a randomly sampled pattern to the universal perturbation

Advantage: Improves the performance on universal perturbations

Drawback: Needs to train an additional network 
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Our Approach: Universal Perturbations

Generator’s Loss Function:

● Non-targeted attacks: 

● Targeted attacks: 
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Fooling Multiple Networks
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Results on Classification
Non-targeted Universal Perturbations:
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Results on Classification
Non-targeted Universal Perturbations:
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Results on Classification
Non-targeted Universal Perturbations:
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Results on Classification
Targeted Universal Perturbations

● The most challenging task
● Average target accuracy on 10 random targets: 52.0%

○ Model: Inception-v3
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Results on Classification
Non-targeted Image-dependent Perturbations
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Results on Classification
Targeted Image-dependent Perturbations

● Average target accuracy on 10 random targets: 89.1%
○ Model: Inception-v3
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Transferability
Adversarial examples created for one network can also fool other networks

Decision boundaries of different networks are correlated
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Results on Semantic Segmentation
Targeted Universal Perturbations
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Results on Semantic Segmentation
Targeted Image-dependent Perturbations
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Results on Semantic Segmentation
Non-targeted Perturbations
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Runtime Analysis
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Resistance to Gaussian Blur
Destruction Rate: Fraction of images that are no longer misclassified after blur 
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Contributions
● We present a unifying framework for creating universal and image-dependent perturbations for both 

classification and semantic segmentation tasks  

● Improve the state-of-the-art performance in universal perturbations by leveraging generative models 
instead of current iterative methods.  

● Present the first effective targeted universal perturbations. (This is the most challenging task as we 
are constrained to have a single perturbation pattern and the prediction should match a specific 
target).  

● Our attacks are considerably faster than iterative and optimization-based methods at inference time. 
We can generate perturbations in the order of milliseconds. 
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