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Adversarial Examples

Slightly perturbed images resembling natural images but maliciously crafted to fool trained models.

e Classification:

88% tabby cat 99% guacamole dog ' +noise ostrich

e Semantic Segmentation:

(a) Original image (b) Perturbation (c) Perturbed image (d) Prediction for original image (e) Target (f) Prediction for perturbed image



Adversarial Examples

Universal Perturbations: Universal perturbations are fixed perturbations which when added to natural

Image-dependent Perturbations: Image-dependent perturbations can vary for different images in the
dataset




Adversarial Examples

Targeted Attacks: \We seek adversarial images that can change the prediction of a model to a specific
target

Non-targeted Attacks: We want to generate adversarial examples for which the model’s prediction is any
label other than the ground-truth

(a) Original image

(b) Perturbation (c) Perturbed image (a) Original image (b) Perturbation (c) Perturbed image

(d) Prediction for original image (e) Target (f) Prediction for perturbed image (d) Prediction for original image (e) Groundtruth (f) Prediction for perturbed image

Targeted Attack Non-targeted Attack



Problem Formulation

y, : ground-truth label for image x € [0, 1]" 0 € [0,1]™ : additive perturbation
n : number of pixels in the image t : target label

e maiiiiver ok el k(x) : Output probabilities of the network for the input

Classification Network K : [0,1]" — {1,...,C}
Semantic Segmentation Network K : [0,1]" — {1,...,C}"

K(z) = argmax k(z)

Non-targeted Perturbation: Targeted Perturbations:
Minimizes [[]],, Minimizes [|d]],
s.t. K(z+9) #ys st. K(x+9) =t
z+6€[0,1]" r+4de(0,1]"

Often intractable optimization problem



Optimization-based methods

e Intriguing Properties of Neural Networks (Szegedy et al. 2014)
Minimizes [|0]|, + ¢ . Loss(z + 6,1)
s.t. x+d €[0,1]"
e Towards Evaluating the Robustness of Neural Networks (Carlini et al. 2017)
Minimizes ||d]|, + ¢ . (log(k(x + 6)): — maxix{log(k(z + ) HT

st. x+d€[0,1]"
k(z + ) : output probabilities of network for input x + §

lteratively updates the perturbation to minimize the loss
Perform a search to find the best positive value for c

Advantage: Very good performance - Drawback: Slow at inference time



Fast Gradient Sign Method (FGSM)

Uses a linear approximation of the loss function at the perturbed sample

Loss(x + 6,yz) = Loss(x,y.) +6 .VyLoss(z,ys) v
+.007x &

Maximizes Loss(x,y,) + 0 . Vo Loss(x,ys;)

st. |9 <€ ; ' 5
H H [e'e) £ sign(VzJ (6, 2,y)) esign(VgJ(0,z,y))
_ . “panda” “nematode” “gibbon”
= 6 € SZgn (Vm LOS S (x 9 yoc ) ) 57.7% confidence 8.2% confidence 99.3 % confidence

Advantage: Fast computation (single forward and backward pass through the network)
Drawback: Linear approximation of the loss surface is not very accurate especially when the sample is far

away from the decision boundary



lterative FGSM

Applies FGSM multiple times with smaller step sizes

0 =g

2" = clip e, g (@™ + o . sign(Vym Loss(z™, y,))

Advantage: More accurate results (better approximation of the loss surface)

Drawback: Slow at inference time (requires multiple forward and backward passes through the network)



Our Approach: Image-dependent Perturbations

Using a generator to learn the perturbation from the input image

Pre-trained
Model
Scale —> Clip 53 )

Similar architecture can be used across different tasks (classification, segmentation, etc.)

Advantage: Fast at inference time (single forward pass through the generator)

Drawback: Needs to train an additional network



Our Approach: Image-dependent Perturbations

Maximizeg Lossk(x + Gg(x), yz) Minimizes — log(Lossk(x + Gg(),y.)) = Lossg
st. [|Go(2)], <€ st |Go(2), <€
v+ Golz) € [0, 1" v+ Go(a) € [0,1]"

Generator’s Loss Function:
e Non-targeted Attacks: Lossg(z,yz) = —log Losskc (z, yx)
Least Likely Class Loss: Lossg(x,,) = log Lossi (x, argmin(k(2)))

e Targeted Attacks: Lossg(x,t) 2 log Lossx(z, t)
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Universal Perturbations

Universal Adversarial Perturbations (Dezfooli et al. 2017)

O

Creating the universal perturbation by adding image-dependent perturbations and scaling the
result

X = @1 oo p i }

Initialize u = 0

1 m
Err(Xu) & — L1 1K () #K ;)

[ : threshold on error rate
While Err(X,) <1-4:

for i in {1,...,m} :

(¢c) VGG-16

78

U < €

(f) ResNet-152
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Our Approach: Universal Perturbations

Transforming a randomly sampled pattern to the universal perturbation

Pre-trained
Model

. K@)

Scale

Advantage: Improves the performance on universal perturbations

Drawback: Needs to train an additional network
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Our Approach: Universal Perturbations

Sample z ~ Uniform|0, 1]"

u = G@(Z)
Maximizeg Lossi(z + Gg(2), yz) Minimizeg — log(Lossi(z + Go(2),yx)) = Lossg
s.t. |Ge(2)|, <e s.t. HGO(Z)Hp <€

z+Ge(2) €0,1]" z 4+ Gy(z) € [0,1]"

Generator’s Loss Function:

A
e Non-targeted attacks: Lossg(x,y.) = —log Lossk (2, y)

Least Likely Class Loss: Lossg(x,,) = log Lossi (x, argmin(k(2)))

e Targeted attacks: A
Lossg(x,t) = log Lossi(x,t)
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Fooling Multiple Networks

k1(z)

Scale

kn(z)

Figure 3: Architecture for training a model to fool multiple target networks. The fooling loss for training the generator is a
linear combination of fooling losses of target models.

lmulti—fool — )\1 ) lfooll e s o )\m ) lfoolm
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Results on Classification

Non-targeted Universal Perturbations:

VGG16 | VGG19 | Inception’ B .|\ S ke 5
GAP | 83.7% | 80.1% 82.7%"° ‘ o . e ats
UAP | 788% | 77.8% 78.9% 3 -

Lo =10

Table 2: Fooling rates of non-targeted universal perturba-
tions using L., norm as the metric.

= Aiﬂ‘ i = l

(d) Target model: VGG-19, Fooling ratio: 80.1%



Results on Classification

Non-targeted Universal Perturbations:

VGG16 | VGG19 | Inception’
GAP | 83.7% | 80.1% 82.7%"°
UAP | 78.8% 77.8% 78.9%

Lo =10

Table 2: Fooling rates of non-targeted universal perturba-
tions using L., norm as the metric.

(c) Target model: Inception-v3, Fooling ratio: 79.2%



Results on Classification

Non-targeted Universal Perturbations:

VGGI16 | VGG19 | ResNetl52
GAP | 939% | 94.9% 79.5%
UAP | 90.3% 84.5% 88.5%

Ly = 2000

Table 1: Fooling rates of non-targeted universal perturba-
tions for various classifiers pre-trained on ImageNet. Our
method (GAP) is compared with Universal Adversarial Per-
turbations (UAP) [35] using Ly norm as the metric.

(a) Target model: VGG-19, Fooling ratio: 94.9%



Results on Classification

Targeted Universal Perturbations

e The most challenging task
e Average target accuracy on 10 random targets: 52.0%
o Model: Inception-v3

(c) Target: Finch, Top-1 target accuracy: 61.8%
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Results on Classification

Non-targeted Image-dependent Perturbations

Loo=T7|Loo=10 | Loc =13
66.9% 80.8% 88.5%
(30.0%) | (17.7%) (10.6%)
68.4% 84.1% 90.7%
(28.8%) | (14.6%) (8.6%)
85.3% 98.3% 99.5%
(13.7%) (1.7%) (0.5%) (b) Lo = 10

VGG16

VGGI19

Inception-v3

Table 3: Fooling ratios (pre-trained models’ accuracies) for
non-targeted image-dependent perturbations.

(©)Lso =13



Results on Classification

Targeted Image-dependent Perturbations

e Average target accuracy on 10 random targets: 89.1%
o Model: Inception-v3

(b) Target: Hamster, Top-1 target accuracy: 87.4%
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Transferability

Adversarial examples created for one network can also fool other networks

Decision boundaries of different networks are correlated

VGG16 | VGG19 | ResNetl52

VGG16 93.9% 89.6% 52.2%
VGG19 88.0% | 94.9% 49.0%
ResNet152 31.9% 30.6% 79.5%

VGG16 + VGG19 | 90.5% 90.1% 54.1%

Table 4: Transferability of non-targeted universal perturba-
tions. The network is trained to fool the pre-trained model
shown in each row, and is tested on the model shown in each
column. Perturbation magnitude is set to Ly = 2000. The
last row indicates joint training on VGG-16 and VGG-19.
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Results on Semantic Segmentation

Targeted Universal Perturbations

Loo =5 | Looc =10 | Loo =20
GAP (Ours) 79.5% 92.1% 97.2%
UAP-Seg [34] | 80.3% 91.0% 96.3%

Table 5: Success rate of targeted universal perturbations for
fooling the FCN-8s segmentation model. Results are ob-

tained on the validation set of the Cityscapes dataset.

(a) Original image (b) Perturbation (c) Perturbed image

(d) Prediction for original image (e) Target (f) Prediction for perturbed image
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Results on Semantic Segmentation

Targeted Image-dependent Perturbations

Lo =5| Looc=10 | Lyxc =20
GAP | 87.0% 96.3% 98.2%

(a) Original image (b) Perturbation (c) Perturbed image

Table 7: Success rate of targeted image-dependent pertur-
bations for fooling FCN-8s on the Cityscapes dataset.

(d) Prediction for original image (e) Target (f) Prediction for perturbed image
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Results on Semantic Segmentation

Non-targeted Perturbations

Task Loo=5] Lo =10 | Loc =20
Universal 12.8% 4.0% 2.1%
Image-dependent 6.9% 2.1% 0.4%

Table 6: Mean IoU of non-targeted perturbations for fooling
the FCN-8s segmentation model on the Cityscapes dataset.

(b) Perturbation

(a) Original image

(c) Perturbed image

(d) Prediction for original image (e) Groundtruth (f) Prediction for perturbed image

Figure 21: Non-targeted universal perturbations with L., = 10.
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Runtime Analysis

Task Architecture | Titan Xp | Tesla K40 Architecture Titan Xp | Tesla K40m
ResNet Gen. U-Net Generator:
Non-targeted 6 blocks, 0.27 ms 4.7 ms 8 layers, 200 filters 132.8 ms S11.7'ms
50 filters .
ResNet Gen. ;{slsiitsf}fj;ﬁt;‘;s 335.7ms | 2396.9 ms
Targeted 6 blocks, 0.28 ms 4.8 ms
57 filters

Table 9: Average inference time per image and generator’s
Table 8: Average inference time per image and generator’s aI‘ChltCCture fOI’ the Semantlc Segmentatlon taSk Targeted
architecture for image-dependent classification tasks. Tar-  1mage-dependent perturbations are considered with FCN-8s
get model is Inception-v3. as the pre-trained model.



Resistance to Gaussian Blur

Destruction Rate: Fraction of images that are no longer misclassified after blur

c=05]0=075]o=1]0c=125 Fslv | galb o | Fole
GAP 0.0% 0.8% 3 2% 3.0% Lius =5 83.2% 76.9% 66.0% 57.1 %
LEGSM 0.0% 0.5% 2 0% 33.0% Lo =101 94.8% 90.1% 80.0% 69.6%
- e i e i Lo =20 | 975% | 957% | 89.3% | 78.8%
Table 10: Destruction Rate of non-targeted image- Table 11: Success rate of targeted image-dependent pertur-

dependent perturbations for the classification task. Pertur-
bation norm is set to L., = 16.

bations for the segmentation task after applying Gaussian
filters.



Contributions

e We present a unifying framework for creating universal and image-dependent perturbations for both
classification and semantic segmentation tasks

e Improve the state-of-the-art performance in universal perturbations by leveraging generative models
instead of current iterative methods.

e Present the first effective targeted universal perturbations. (This is the most challenging task as we
are constrained to have a single perturbation pattern and the prediction should match a specific
target).

e Our attacks are considerably faster than iterative and optimization-based methods at inference time.
We can generate perturbations in the order of milliseconds.
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