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Abstract

While deep neural networks have achieved remarkable
success in various computer vision tasks, they often fail to
generalize to new domains and subtle variations of input
images. Several defenses have been proposed to improve
the robustness against these variations. However, current
defenses can only withstand the specific attack used in train-
ing, and the models often remain vulnerable to other input
variations. Moreover, these methods often degrade perfor-
mance of the model on clean images and do not generalize
to out-of-domain samples. In this paper we present Gener-
ative Adversarial Training, an approach to simultaneously
improve the model’s generalization to the test set and out-
of-domain samples as well as its robustness to unseen ad-
versarial attacks. Instead of altering a single pre-defined
aspect of images, we generate a spectrum of low-level, mid-
level and high-level changes using generative models with a
disentangled latent space. Adversarial training with these
examples enable the model to withstand a wide range of
attacks by observing a variety of input alterations during
training. We show that our approach not only improves per-
formance of the model on clean images and out-of-domain
samples but also makes it robust against unforeseen attacks
and outperforms prior work. We validate effectiveness of
our method by demonstrating results on various tasks such
as classification, segmentation and object detection.

1. Introduction
Deep neural networks have shown promising generaliza-

tion to in-domain samples. However, they are vulnerable to
slight alterations of input images and have limited general-
ization to new domains. Several defenses have been pro-
posed for improving the models’ robustness against input
variations. However, these models only provide robustness
against a narrow range of threat models used in training,
and they have poor generalization to unseen attacks. We
hypothesize that this is due to the fact that they only con-

sider a small subset of realistic examples on or near the
manifold of natural images. For instance, additive pertur-
bations leave high-level semantic aspects of images intact.
Therefore, models trained against these examples do not
provide robustness to high-level input variations. In order
for a model to become robust to all realistic variations of in-
puts, it needs to see a diverse set of samples during training.
However, most of the existing works only alter a single as-
pect of images such as color [18, 24, 4], spatial [13, 36, 1],
pose [2, 42], and others. Even if we consider the union
of several types of attacks, the model can still be vulnera-
ble to other input variations that are not contained in any of
the constituent threat models. To provide robustness against
unforeseen attacks, we propose adversarial training against
a range of low-level to high-level variations of inputs. We
leverage generative models with disentangled latent repre-
sentations to systematically build diverse and realistic ex-
amples without leaving the manifold of natural images. We
show that our approach improves generalization and robust-
ness of the model to unseen variations of input images with-
out training against any of them.

We build upon state-of-the-art generative models which
disentangle factors of variation in images. We create fine
and coarse-grained adversarial changes by manipulating
various latent variables at different resolutions. Loss of the
target network is used to guide the generation process. The
pre-trained generative model constrains the search space for
our adversarial examples to realistic images, thereby re-
vealing the target model’s vulnerability in the natural im-
age space. We verify that we do not deviate from the space
of realistic images with a user study as well as a t-SNE plot
comparing distributions of real and adversarial images. As a
result, we observe that including these examples in training
the model enhances its accuracy on clean images as well as
out-of-domain samples. Moreover, since the model has seen
a variety of low-level and high-level alterations of images, it
becomes robust to a wide range of adversarial examples in-
cluding recoloring, spatial transformations, perceptual and
additive perturbations.



Our contributions can be summarized as follows:

• We present Generative Adversarial Training (GAT) to
simultaneously improve the model’s generalization to
clean and out-of-domain samples and its robustness to
unforeseen attacks. Our approach is based on adversar-
ial training with fine-grained unrestricted adversarial
examples in which the attacker controls which aspects
of the image to manipulate, resulting in a diverse set of
realistic, on-the-manifold examples.

• We evaluate GAT against a diverse set of adversarial
attacks: recoloring, spatial transformations, percep-
tual and additive perturbations, and demonstrate that
it achieves state-of-the-art robustness against these at-
tacks without training against any of them.

• We extend our approach to semantic segmentation and
object detection tasks, and propose the first method for
generating unrestricted adversarial examples for seg-
mentation and detection. Training with our examples
improves both robustness and generalization of the
model.

2. Related Work
2.1. Adversarial Examples

Most of the existing works on adversarial attacks focus
on norm-constrained adversarial examples: for a given clas-
sifier F : Rn → {1, . . . ,K} and an image x ∈ Rn, the ad-
versarial image x′ ∈ Rn is created such that ‖x− x′‖p < ε
and F (x) 6= F (x′). Common values for p are 0, 2,∞, and ε
is chosen small enough so that the perturbation is impercep-
tible. Various algorithms have been proposed for creating
x′ from x. Optimization-based methods solve a surrogate
optimization problem based on the classifier’s loss and the
perturbation norm [34, 14, 8]. Gradient-based methods use
gradient of the classifier’s loss with respect to the input im-
age [15, 27, 11, 23].

Another line of work creates unrestricted adversarial ex-
amples that are not bounded by a norm threshold. One
way to achieve this is by applying subtle geometric trans-
formations such as spatial transformations [36, 1], transla-
tions and rotations [13] or pose changes [2] to the inputs.
Other works consider recoloring [18, 24, 4], intermediate
features [12, 25, 40] and inserting new objects or patches in
the image [6]. A challenge for creating unrestricted adver-
sarial examples and defending against them is introduced in
[5] using the simple task of classifying between birds and
bicycles. Recent works consider using generative models
to create adversarial examples. Song et al. [31] search in
the latent (z) space of AC-GAN [28] to find generated im-
ages that can fool a target classifier but yield correct pre-
dictions on AC-GAN’s auxiliary classifier. They constrain

the search region of z so that it is close to a randomly sam-
pled noise vector, and show results on MNIST, SVHN and
CelebA datasets. This approach does not alter any aspects
of images and merely generates a set of generated images
misclassified by the model. As we show in the supplemen-
tary material, training with these adversarial examples hurts
the classifier’s performance on clean images. One reason
for this accuracy drop is that requiring two classifiers to
have inconsistent predictions degrades sample quality of the
model. To further illustrate difference of our approach with
[31], we plot t-SNE embeddings of real CelebA-HQ im-
ages and adversarial examples from our method and [31]
in the supplementary material, and show that our adver-
sarial images stay closer to the manifold of real images.
The recent work by [16] shows that adversarial training
with examples generated by StyleGAN can improve per-
formance of the model on clean images. Their approach
requires precomputing a mapping from the image space to
the latent space for the whole dataset, which is computa-
tionally prohibitive for large datasets. It is also constrained
to fine changes using only a subset of the latent variables.
They argue that coarse changes might be label-dependent.
This statement is not true since coarse stylistic changes do
not alter the label (e.g. gender) and merely modify high-
level aspects of images. Moreover, [16] only considers the
classification task on low-resolution datasets such as Col-
orMNIST (28x28) and CelebA (64x64). While their ap-
proach uses the StyleGAN model, they do not show any
results on high-resolution datasets that StyleGAN is origi-
nally trained on (e.g. LSUN and CelebA-HQ (1024x1024)),
which makes it hard to ascertain that their adversarial train-
ing will be effective on high-resolution datasets. Even on
low-resolution datasets such as Color-MNIST, their adver-
sarial training can perform worse than random sampling on
unbiased datasets as shown in Table 2 of [16]. On the other
hand, our approach directly samples and manipulates latent
variables without requiring the mapping step. We demon-
strate that by limiting the number of iterations we can use
both coarse and fine changes and both contribute to im-
provements in performance. While [16] only enhances the
accuracy on clean images, our approach also improves gen-
eralization to out-of-domains samples and unseen adversar-
ial examples. In addition, we propose the first method for
unrestricted adversarial attacks on semantic segmentation
and object detection, and demonstrate that adversarial train-
ing improves segmentation and detection results on clean
images.

2.2. Adversarial Robustness

Several methods have been proposed for defending
against adversarial attacks. Many defenses attempt to com-
bat adversaries using a form of input pre-processing or
by manipulating intermediate features or gradients [17, 38,



30]. Few approaches have been able to scale up to high-
resolution datasets such as ImageNet [26, 39, 20]. Most
of the proposed heuristic defenses were later broken by
stronger adversaries [8, 35, 3]. One of the most success-
ful defenses is adversarial training [15, 23, 27, 37, 32, 16]
which augments training data with adversarial examples
generated as the training progresses. This approach is
able to withstand strong attacks. Adversarial training with
perturbation-based examples degrades performance of the
model on clean images. [37] proposes to use separate batch
norm layers for clean and adversarial images to avoid the
accuracy drop. Our approach improves the model’s accu-
racy on clean images without modifying the architecture.
Moreover, unlike prior work which make the classifier ro-
bust only against the specific attack used in training, our
method provides generalizable robustness across a range of
attacks.

3. Approach
We present Generative Adversarial Training, a method

for improving generalization and robustness of models to
unseen attacks. Most of the existing works on adversarial
attacks modify a single low-level aspect of images, thereby
a model adversarially trained with these samples remains
susceptible to various other input alterations. We demon-
strate that by encouraging diversity and realism in the gen-
erated adversarial examples, we can improve both perfor-
mance of the model on clean and out-of-domain images and
its robustness to a wide range of adversarial attacks. Our ap-
proach creates a spectrum of low-level, mid-level and high-
level changes for which the target network fails to general-
ize. The adversarially trained model observes a variety of
examples on or near the manifold of natural images. This al-
lows the model to generalize better to test samples and var-
ious alterations of images. We leverage disentangled latent
representations for generating the adversarial examples. We
build upon state-of-the-art generative models and use Style-
GAN [22] for the classification task and SPADE [29] for
semantic segmentation and object detection.

3.1. Classification

Style-GAN [22] is a state-of-the-art generative model
which disentangles high-level attributes and stochastic vari-
ations in an unsupervised manner. Stylistic variations are
represented by style variables and stochastic details are cap-
tured by noise variables. Changing the noise only affects
low-level details, leaving the overall composition and high-
level aspects intact. This allows us to manipulate the noise
variables such that variations are barely noticeable by the
human eye. The style variables affect higher level aspects of
image generation. For instance, when the model is trained
on bedrooms, style variables from the top layers control
viewpoint of the camera, middle layers select the particu-

lar furniture, and bottom layers deal with colors and details
of materials [22]. This allows us to manipulate images in
a controlled manner, providing an avenue for fine-grained
unrestricted attacks.

Formally, we can represent Style-GAN with a mapping
function f and a synthesis network g. As illustrated in Fig-
ure 1, the mapping function is an 8-layer MLP which takes
a latent code z, and produces an intermediate latent vec-
tor w = f(z). This vector is then specialized by learned
affine transformations A to style variables y, which control
adaptive instance normalization operations after each con-
volutional layer of the synthesis network g. Noise inputs are
single-channel images consisting of un-correlated Gaussian
noise that are fed to each layer of the synthesis network.
Learned per-feature scaling factors B are used to generate
noise variables η which are added to the output of convo-
lutional layers. The synthesis network takes style y and
noise η as input, and generates an image x = g(y,η). We
pass the generated image to a pre-trained classifier F . We
seek to slightly modify x so that F can no longer classify it
correctly. We achieve this through perturbing the style and
noise tensors. We initialize adversarial style and noise vari-
ables as y

(0)
adv = y and η

(0)
adv = η, and iteratively update

them in order to fool the classifier. Loss of the classifier de-
termines the update rule, which in turn depends on the type
of attack. As common in the literature, we consider two
types of attacks: non-targeted and targeted.

In order to generate non-targeted adversarial examples,
we need to change the model’s original prediction. Starting
from initial values y(0)

adv = y and η
(0)
adv = η, we can itera-

tively perform gradient ascent in the style and noise spaces
of the generator to find values that maximize the classifier’s
loss. Alternatively, as proposed by [23], we can use the
least-likely predicted class llx = argmin(F (x)) as our tar-
get. We found this approach more effective in practice. At
time step t, the update rule for style and noise variables is:

y
(t+1)
adv = y

(t)
adv−ε ·sign(∇y

(t)
adv

J(F (g(y
(t)
adv,η

(t)
adv)), llx))

(1)
η
(t+1)
adv = η

(t)
adv−δ ·sign(∇η

(t)
adv

J(F (g(y
(t)
adv,η

(t)
adv)), llx))

(2)
in which J(·, ·) is the classifier’s loss function, F (·) gives
the probability distribution over classes, x = g(y,η), and
ε, δ ∈ R are step sizes. We use (ε, δ) = (0.004, 0.2) and
(0.004, 0.1) for LSUN and CelebA-HQ respectively. We
perform multiple steps of gradient descent (usually 2 to 10)
until the classifier is fooled. We report the average number
of iterations required to fool the classifier in the supplemen-
tary material.

Generating targeted adversarial examples is more chal-
lenging as we need to change the prediction to a specific
class T . In this case, we perform gradient descent to mini-
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Figure 1: Classification architecture. Style (y) and noise (η) variables are used to generate images g(y,η) which are fed to
the classifier F . Adversarial style and noise tensors are initialized with y and η and iteratively updated using gradients of the
loss function J . The classifier F is adversarially trained with clean and adversarial samples.

mize the classifier’s loss with respect to the target T :

y
(t+1)
adv = y

(t)
adv − ε · sign(∇y

(t)
adv

J(F (g(y
(t)
adv,η

(t)
adv)), T ))

(3)
η
(t+1)
adv = η

(t)
adv − δ · sign(∇η

(t)
adv

J(F (g(y
(t)
adv,η

(t)
adv)), T ))

(4)
We use (ε, δ) = (0.005, 0.2) and (0.004, 0.1) in the experi-
ments on LSUN and CelebA-HQ respectively. Note that we
only control deviation from the initial latent variables, and
do not impose any norm constraint on generated images.

The classifier F is adversarially trained with equal num-
ber of clean and adversarial images. To maximize diversity
of generated samples, we manipulate groups of consecutive
style and noise layers separately (e.g. layers 1-2, 3-4, etc.)
for experiments on adversarial training. As the training pro-
gresses, the classifier observes a variety of examples and
becomes more robust to input variations. Hence, the gener-
ator needs to explore new areas of the natural image man-
ifold that correspond to generalization errors of the classi-
fier. Since our model allows both coarse and fine changes, it
results in superior generalization performance compared to
existing works on adversarial training that only manipulate
a single aspect of images.

3.1.1 Input-conditioned Generation

Generation can also be conditioned on real input images by
embedding them into the latent space of Style-GAN. We
first synthesize images similar to the given input image I by
optimizing values of y and η such that g(y,η) is close to
I . More specifically, we minimize the perceptual distance

[19] between g(y,η) and I . We can then proceed similar
to equations 1–4 to perturb these tensors and generate the
adversarial image. Realism of synthesized images depends
on inference properties of the generative model. In practice,
generated images resemble input images with high fidelity
especially for CelebA-HQ images.

3.2. Semantic Segmentation and Object Detection

We also consider the task of semantic segmentation and
leverage the generative model proposed by [29]. The model
is conditioned on input semantic layouts and uses SPatially-
Adaptive (DE)normalization (SPADE) modules to better
preserve semantic information against common normaliza-
tion layers. The layout is first projected onto an embedding
space and then convolved to produce the modulation param-
eters γ and β. We adversarially modify these parameters
with the goal of fooling a segmentation model. We consider
non-targeted attacks using per-pixel predictions and com-
pute gradient of the loss function with respect to the mod-
ulation parameters with an update rule similar to equations
1 and 2. Figure 2 illustrates the architecture. We consider a
similar architecture for the object detection task except that
we pass the generated image to the detection model and try
to increase its loss. Results for this task are shown in the
supplementary material.

4. Results and Discussion
We provide qualitative and quantitative results using ex-

periments on LSUN [41] and CelebA-HQ [21]. LSUN con-
tains 10 scene categories and 20 object categories. We use
all the scene classes as well as two object classes: cars and



conv

conv

Batch
Norm

Figure 2: Semantic segmentation and object detection architecture. Adversarial parameters γadv and βadv are initialized with
γ and β, and iteratively updated to fool the segmentation or detection model G. The model G is adversarially trained with
clean and adversarial examples.

cats. We consider this dataset since it is used in Style-GAN,
and is well suited for a classification task. For the scene cat-
egories, a 10-way classifier is trained based on Inception-v3
[33] which achieves an accuracy of 88.9% on LSUN’s test
set. The two object classes also appear in ImageNet [10],
a richer dataset containing 1000 categories. Therefore, for
experiments on cars and cats we use an Inception-v3 model
trained on ImageNet. This allows us to explore a broader
set of categories in our attacks, and is particularly helpful
for targeted adversarial examples. CelebA-HQ consists of
30,000 face images at 1024× 1024 resolution. We consider
the gender classification task, and use the classifier provided
by [22]. This is a binary task for which targeted and non-
targeted attacks are similar.

In order to synthesize a variety of adversarial examples,
we use different random seeds in Style-GAN to obtain vari-
ous values for z,w,y and η. Style-based adversarial exam-
ples are generated by initializing yadv with the value of y,
and iteratively updating it as in equation 1 (or 3) until the
resulting image g(yadv,η) fools the classifier F . Noise-
based adversarial examples are created similarly using ηadv

and the update rule in equation 2 (or 4). While using differ-
ent step sizes makes a fair comparison difficult, we gener-
ally found it easier to fool the model by manipulating the
noise variables. We can also combine the effect of style and
noise by simultaneously updating yadv and ηadv in each it-
eration, and feeding g(yadv,ηadv) to the classifier. In this
case, the effect of style usually dominates since it creates
coarser changes.

Figure 3 illustrates generated adversarial examples
on LSUN. Original images g(y,η), noise-based images

g(y,ηadv) and style-based images g(yadv,η) are shown.
Adversarial images look almost indistinguishable from nat-
ural images. Manipulating the noise variable results in
subtle, imperceptible changes. Varying the style leads
to coarser changes such as different colorization, pose
changes, and even removing or inserting objects in the
scene. We can also control granularity of changes by select-
ing specific layers of the model. Manipulating top layers,
corresponding to coarse spatial resolutions, results in high-
level changes. Lower layers, on the other hand, modify finer
details. In the first two columns of Figure 3, we only mod-
ify top 6 layers (out of 18) to generate adversarial images.
The middle two columns change layers 7 to 12, and the last
column uses the bottom 6 layers. We also show results on
CelebA-HQ gender classification in the supplementary ma-
terial. Figure 4 illustrates adversarial examples conditioned
on real input images using the procedure described in Sec-
tion 3.1.1. Synthesized images resemble inputs with high
fidelity, and set the initial values in our optimization pro-
cess.

We also show results on semantic segmentation in
Figure 5 in which we consider non-targeted attacks on
DeepLab-v2 [9] with a generator trained on the COCO-stuff
dataset [7]. We iteratively modify modulation parameters at
all layers, using a step size of 0.001, to maximize the seg-
mentation loss with respect to the given label map. As we
observe, subtle modifications to images lead to large drops
in accuracy. Object detection results and additional exam-
ples are provided in the supplementary material.
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Figure 3: Unrestricted adversarial examples on LSUN for a) non-targeted and b) targeted attacks. Predicted classes are shown
under each image.

4.1. Adversarial Training

Adversarial training increases robustness of models by
injecting adversarial examples into training data. Adversar-

ial training with norm-bounded examples degrades perfor-
mance of the classifier on clean images as they have differ-
ent underlying distributions. We show that adversarial train-
ing with our unrestricted examples improves the model’s ac-



Figure 4: Input-conditioned adversarial examples on CelebA-HQ gender classification. From top to bottom: input, generated
and style-based images. Males are classified as females and vice versa.

Figure 5: Unrestricted adversarial examples for semantic segmentation. Generated images, corresponding predictions and
their accuracy (ratio of correctly predicted pixels) are shown for different number of iterations.

curacy on clean test images as well as out-of-domain sam-
ples. To ensure that the model maximally benefits from
these additional samples, we need to avoid unrealistic ex-
amples which do not resemble natural images. Therefore,
we only include samples that can fool the model in less
than a specific number of iterations. We use a threshold
of 10 as the maximum number of iterations, and demon-
strate results on classification, semantic segmentation and
object detection1. We use the first 10 generated examples
for each starting image in the segmentation and detection
tasks. Table 1 shows accuracy of the strengthened and orig-
inal classifiers on clean and adversarial test images. For the
segmentation and detection tasks we report the mean accu-
racy and average precision of adversarial images at iteration

1In the supplementary material we show that limiting the number of
iterations for norm-bounded perturbations is not effective for avoiding the
accuracy drop on clean images.

10. Similar to norm-constrained perturbations, adversarial
training is an effective defense against our unrestricted at-
tacks. Note that accuracy of the model on clean test images
is improved after adversarial training. This is in contrast to
training with norm-bounded adversarial inputs which hurts
the classifier’s performance on clean images, and it is due
to the fact that unlike perturbation-based inputs, our gen-
erated images live on the manifold of realistic images as
constrained by the generative model.

We also evaluate the adversarially trained model against
various unforeseen attacks to demonstrate generalizable ro-
bustness of the model. We consider several attacks includ-
ing recoloring [18, 24], spatial transformations [36], percep-
tual [25] and additive perturbations [27]. Results are shown
in Table 2, and are compared against other defense meth-
ods such as Adversarial Training with PGD (AT PGD) [27],
AT Spatial [36], AT Recolor [24], PAT [25] and AT Ad-



Classification (LSUN) Classification (CelebA-HQ) Segmentation Detection
Clean Adversarial Clean Adversarial Clean Adversarial Clean Adversarial

Adv. Trained 89.5% 78.4% 96.2% 83.6% 69.1% 60.2% 40.2% 33.7%
Original 88.9% 0.0% 95.7% 0.0% 67.9% 2.7% 39.0% 2.0%

Table 1: Performance of adversarially trained and original models on clean and adversarial test images. Accuracy is shown
for classification and segmentation, and Average Precision is shown for object detection.

Model Attack Mean
Clean GAT PGD Spatial Recolor Perceptual

GAT (Ours) 89.5% 78.4% 39.4% 47.8% 52.3% 28.9% 42.1%
AT PGD [27] 81.2% 6.3% 56.7% 5.1% 37.9% 2.8% 13.0%

AT AdvProp [37] 89.4% 7.8% 57.6% 6.0% 38.5% 3.5% 22.7%
AT Spatial [36] 76.3% 5.4% 3.1% 66.0% 4.1% 2.2% 3.7%
AT Recolor [24] 88.6% 4.7% 7.3% 0.4% 60.7% 1.7% 3.5%

PAT [25] 72.4% 18.3% 40.1% 46.3% 42.5% 30.1% 36.5%

Table 2: Accuracy of adversarially trained models against various attacks on the LSUN dataset. The mean accuracy of models
on unseen attacks is shown in the last column.

LSUN ImageNet
Adv. Trained 94.7% 92.0%

Original 94.2% 91.4%

Table 3: Generalization of the models to in-domain (LSUN)
and out-of-domain (ImageNet) samples.

vProp [37]. We observe that our adversarially trained model
achieves superior robustness to these attacks. Unlike other
methods which create a single low-level change for each im-
age, our approach generates a spectrum of low-level, mid-
level and high-level changes around each sample, resulting
in superior generalization to a variety of attacks without be-
ing trained against them. We also evaluate our attack against
a certified defense in the supplementary material.

Finally, we examine performance of the model on out-
of-domain samples. We train a binary classifier on the two
object classes of LSUN, i.e. cars and cats. We then eval-
uate the model on test samples from LSUN and ImageNet.
Since several ImageNet classes represent cars and cats, we
group all the relevant categories. Table 3 demonstrates the
results for regular and adversarially trained models. We ob-
serve that adversarial training with our examples improves
generalization power of the model to LSUN test images as
well as ImageNet out-of-domain samples.

4.2. User Study

Norm-constrained attacks provide visual realism by Lp

proximity to a real input. To verify that our unrestricted
adversarial examples are realistic and correctly classified
by an oracle, we perform human evaluation using Amazon
Mechanical Turk. In the first experiment, each adversar-
ial image is assigned to three workers, and their majority

vote is considered as the label. The user interface for each
worker contains nine images, and shows possible labels to
choose from. We use 2400 noise-based and 2400 style-
based adversarial images from the LSUN dataset, contain-
ing 200 samples from each class (10 scene classes and 2
object classes). The results indicate that 99.2% of workers’
majority votes match the ground-truth labels. This number
is 98.7% for style-based adversarial examples and 99.7%
for noise-based ones. As we observe in Figure 3, noise-
based examples do not deviate much from the original im-
age, resulting in easier prediction by a human observer. On
the other hand, style-based images show coarser changes,
which in a few cases result in unrecognizable images or
false predictions by the workers.

We use a similar setup in the second experiment but for
classifying real versus fake (generated). We also include
2400 real images as well as 2400 unperturbed images gen-
erated by Style-GAN. 74.7% of unperturbed images are la-
beled by workers as real. This number is 74.3% for noise-
based adversarial examples and 70.8% for style-based ones,
indicating less than 4% drop compared with unperturbed
images generated by Style-GAN.

5. Conclusion and Future Work

Existing works on adversarial defense assume a known
threat model in advance. Therefore, adversaries can eas-
ily circumvent these defenses by using different types of
attacks. This raises the need for defenses that are robust
against unforeseen threat models. To this end, we incorpo-
rate diversity and realism in the examples used in adversar-
ial training to bridge the distribution gap between real and
adversarial examples. We leverage state-of-the-art genera-



tive models with disentangled representations which enable
a range of low-level to high-level adversarial changes with-
out leaving the manifold of natural images. We demonstrate
results on classification, segmentation and object detection
tasks. We consider extending the model to other tasks and
evaluating it against new threat models in the future.
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