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Adversarial Image Manipulation
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Similarity of Images
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Manifold of Natural Images
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Manifold of Natural Images
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Manifold of Natural Images

Classifiers equipped with defense
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Unrestricted Adversarial Examples

Can we move on the manifold?

 Class A ﬂmass B




Unrestricted Adversarial Examples

Using a generative model to approximate the manifold

Go(Z) =M Gy : Generator

Z ~ UJ[0,1]F M : Data Manifold




Unrestricted Adversarial Examples
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Unrestricted Adversarial Examples

Class A




Unrestricted Adversarial Examples

Latent z

Iteratively updating the variables
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Fine-grained Unrestricted Adversarial Examples

Only manipulating specific layers

Top layers: high-level changes




Fine-grained Unrestricted Adversarial Examples

Results on LSUN: Non-targeted
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Fine-grained Unrestricted Adversarial Examples

Results on LSUN: Targeted
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Fine-grained Unrestricted Adversarial Examples

Results on CelebA-HQ Gender Classification
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Adversarial Training

Including adversarial images in training the classifier

e FEffective as a defense

e Improves performance on clean images

Classification (LSUN) | Classification (CelebA-HQ) Segmentation Detection
Clean | Adversarial | Clean Adversarial Clean | Adversarial | Clean | Adversarial
Adv. Trained | 89.5% 78.4% 96.2% 83.6% 69.1% 60.2% 40.2% 33.7%
Original 88.9% 0.0% 95.7% 0.0% 67.9% 2.7% 39.0% 2.0%




Adversarial Training

Model Attack Mean

Clean | GAT PGD | Spatial | Recolor | Perceptual

GAT (Ours) 89.5% | 784% | 39.4% | 47.8% | 52.3% 28.9% 42.1%

AT PGD [27] 812% | 63% | 56.7% | 5.1% 37.9% 2.8% 13.0%

AT AdvProp [37] | 89.4% | 7.8% | 57.6% | 6.0% 38.5% 3.5% 22.7%

AT Spatial [36] 76.3% | 54% | 3.1% | 66.0% 4.1% 2.2% 3.7%

AT Recolor [24] | 88.6% | 4.7% | 7.3% 0.4% 60.7% 1.7% 3.5%

PAT [25] 72.4% | 183% | 40.1% | 46.3% | 42.5% 30.1% 36.5%




User Study

Real or Fake?

e Accuracy on un-adversarial generated images: 74.7%
e Accuracy on style-based adversarial images: 70.8%

e Accuracy on noise-based adversarial images: 74.3%

Correct category?

e Accuracy on style-based images: 98.7%

e Accuracy on noise-based images: 99.2%



Evaluation on Certified Defenses

Certified defenses exist on norm-bounded attacks

e \ulnerable to our unrestricted attack

Accuracy
Clean 63.1%

Adversarial (style) 21.7%

Adversarial (noise) 37.8%

Table 1: Accuracy of a certified classifier equipped with
randomized smoothing on adversarial images.



