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Abstract

We introduce Patch Aligned Contrastive Learning
(PACL), a modified compatibility function for CLIP’s con-
trastive loss, intending to train an alignment between the
patch tokens of the vision encoder and the CLS token of the
text encoder. With such an alignment, a model can identify
regions of an image corresponding to a given text input, and
therefore transfer seamlessly to the task of open vocabulary
semantic segmentation without requiring any segmentation
annotations during training. Using pre-trained CLIP en-
coders with PACL, we are able to set the state-of-the-art
on the task of open vocabulary zero-shot segmentation on
4 different segmentation benchmarks: Pascal VOC, Pascal
Context, COCO Stuff and ADE20K. Furthermore, we show
that PACL is also applicable to image-level predictions and
when used with a CLIP backbone, provides a general im-
provement in zero-shot classification accuracy compared to
CLIP, across a suite of 12 image classification datasets.

1. Introduction

Understanding the semantic content in visual scenes has
been one of the most important problems studied in com-
puter vision at various levels of granularity. Work on this
problem has led to significant improvements along several
threads including image level predictions like image clas-
sification [13, 54, 58], object level predictions within an
image like object detection [33, 51, 53, 59–61], as well as
pixel level predictions in an image like semantic segmenta-
tion [10,29,51,53]. Although in image classification we re-
quire only a single label per image for prediction, for scene
understanding at a higher level of granularity like segmen-
tation, training supervised models requires annotations at a
pixel level. Such annotations require significant human ef-
fort and are often very expensive to obtain. This impedes
training such supervised models on a large scale with mil-
lions of images.

Figure 1. High level overview of our model. We train an align-
ment between the patch level embeddings from the image encoder
and the CLS embedding from the text encoder. This alignment
can then be used to perform open-vocabulary semantic segmenta-
tion in a zero-shot manner.

One way to tackle this problem could be to train mod-
els in an unsupervised manner without requiring any seg-
mentation annotations. The best methods [11, 19] in this
category exploit the similarity between internal representa-
tions of self-supervised image encoders [5]. This similarity
is then used to identify and cluster similar regions of the
image as segmentations. These models however are signif-
icantly outperformed by their fully supervised counterparts
on most segmentation benchmarks.

Recent improvements in multi-modal foundation mod-
els has led to the possibility of training on very large scale
datasets scraped off the internet [41]. These datasets mostly
contain pairs of images and their corresponding natural lan-
guage text descriptions. Models like CLIP [41], ALIGN
[23], Florence [59] and CoCa [58] trained on such large in-
ternet scale datasets have been shown to transfer very well
to several downstream tasks. Furthermore, having been
trained on natural language textual descriptions, these mod-
els are often expected to recognize a wide variety of real-
world visual concepts which can be expressed in natural
language, a setting better known as open vocabulary pre-
diction.

The natural question then is whether these multi-modal



models can be used for pixel level predictions, i.e., semantic
segmentation in the open vocabulary setting. Prior works
on this topic [17, 28, 32, 56, 57] show that this is indeed
possible. However, 3 of these works use either fully su-
pervised segmentation annotations [32], class-agnostic seg-
mentation masks [17] or a region proposal model trained
using segmentation annotations [57], thereby being lim-
ited by the availability of expensive segmentation anno-
tations/masks. To the best of our knowledge, only two
models: ViL-Seg [32] and GroupViT [56] perform the
task of open-vocabulary semantic segmentation while be-
ing trained solely on image-text data. Among these two,
the better performer, GroupViT, defines a modified vision
transformer (ViT) [15] architecture to naturally find seman-
tic clusters within an image. Due to a different architecture,
their model has to be trained end-to-end from scratch using
image-text datasets and cannot leverage pre-trained vision
encoders.

In this work, we tackle the problem of open-vocabulary
semantic segmentation without using any segmentation an-
notations or masks, with a model purely trained on image-
text data. We start with the observation in [19] that self-
supervised ViT models like DINO [5], have similar patch
representations for semantically similar regions of an im-
age. We find this observation to be true for CLIP’s ViT
based vision encoders as well. However, we also find that
CLIP does not exhibit a patch level alignment between its
vision and text encoders, primarily owing to the fact that its
contrastive loss only aligns the CLS image and text tokens.

Inspired from previous work on contrastive learning for
weakly supervised phrase grounding [18], we define a new
compatibility function for contrastive loss to train an align-
ment between the patch tokens of the vision encoder and
the CLS token of the text encoder. In particular, we take the
cosine similarity between the text CLS token and the vision
patch tokens and use these similarities as weights to com-
pute a weighted sum over vision tokens. The final compat-
ibility function is then simply the cosine similarity between
the weighted sum of the vision patch tokens thus obtained
and the CLS text token. We find that models trained on our
Patch Aligned Contrastive Learning loss indeed exhibit the
desired patch level fine-grained alignment. Thus, at infer-
ence time, the compatibility function can be used to make
image level predictions and the patch level alignment can
be used for zero-shot transfer to semantic segmentation. A
high level overview of our model is shown in Figure 1.

Note that unlike GroupViT, our PACL method is more
flexible and general and can be used with any pre-trained
ViT based encoders as well. We evaluate PACL with a
pre-trained CLIP encoder on the task of zero-shot semantic
segmentation using 4 different datasets: Pascal VOC [16],
Pascal Context [36], COCO Stuff [4] and ADE20K [63].
On all 4 datasets, PACL consistently beats previous base-

lines [17, 28, 32, 56], even the ones which use segmentation
annotations or segmentation masks for training. In addi-
tion, we find that PACL trained on top of a CLIP backbone
leads to a general improvement in zero-shot classification
performance across a suite of 12 different image classifica-
tion datasets.

Thus, in a nutshell, our contributions are as follows.
Firstly, we propose Patch Aligned Contrastive Learning
(PACL), a modified compatibility function for contrastive
loss in order to train an alignment between the patch rep-
resentations of a ViT based vision encoder and the CLS
text representation of a text encoder. We show that this
alignment can be used to find regions within an image cor-
responding to a given text input and hence, can be used
for zero-shot transfer to open-vocabulary semantic seg-
mentation. Secondly, we show that PACL with a pre-
trained CLIP encoder obtains state-of-the-art scores on
zero-shot semantic segmentation across 4 different segmen-
tation benchmarks: Pascal VOC, Pascal Context, COCO
Stuff and ADE20K. Finally, PACL with a CLIP backbone
also shows a general improvement in performance on zero-
shot classification tasks across 12 different image classifi-
cation datasets.

2. Related Work
In this section, we discuss some of the relevant works

motivating our method.
Supervised semantic segmentation: Given an image,

the task of semantic segmentation [34] involves classifying
every pixel in the image to one of a fixed set of classes. Nat-
urally, supervised datasets for semantic segmentation like
Pascal VOC [16], ADE20K [63] and Cityscapes [12] con-
tain images with class annotations for every pixel. A signif-
icant amount of work [8, 43, 49, 62] has been done to lever-
age these datasets and generate strong models for semantic
segmentation. However, since annotating images at a pixel
level is laborious and expensive, these datasets remain lim-
ited to a relatively small number of classes.

Unsupervised semantic segmentation: Identifying that
the requirement of dense annotations is the problem, some
works [11, 19, 22, 35, 47, 52] have tried to leverage self-
supervised learning techniques to train features which can
be used for segmentation without requiring dense anno-
tations. Notable among these works is STEGO [19]
which uses the localized feature correspondences in self-
supervised models like DINO [5] for the task of unsuper-
vised segmentation. In our work, we study the existence
of a similar feature correspondence in vision encoders of
multi-modal models like CLIP [41] and use it to train a
patch level alignment between image and text modalities.
Note however, that it is still difficult for such unsupervised
segmentation approaches to scale up to a large number of
visual concepts.



Natural language supervision: Recently, the availabil-
ity of datasets with millions of image-text pairs scraped
from the internet has made it possible to train large-scale
multi-modal fusion models on such datasets. Such mod-
els [23, 25, 41, 45, 58, 59] are able to transfer well to several
downstream tasks including vision-language pre-training
(VLP) [7] tasks like image-text retrieval [50] and visual
question answering [1], as well as vision specific tasks like
zero-shot image classification [23, 41, 58] and object detec-
tion [24, 61]. Given the large-scale training of such multi-
modal fusion models, it is then natural to ask if these models
can be leveraged to scale up the task of semantic segmen-
tation and recognise a large number of visual concepts at a
fine-grained level.

Natural language supervision for zero-shot segmen-
tation: Some work has been done in this direction of using
large-scale multi-modal models, like CLIP [41], for the task
of semantic segmentation. For instance, LSeg [28] trains
a segmentation model as its vision encoder and uses the
frozen text encoder from CLIP to align pixel level embed-
dings with text. The resulting model is able to recognise
conceptually similar labels which are not present within
the training set. However, it trains the vision encoder in
a fully supervised manner using segmentation annotations.
OpenSeg [17] on the other hand is based on the ALIGN [23]
model and trains using image-text data and class-agnostic
segmentation annotations. ViL-Seg [32] trains using only
image-text data with a vision based contrasting and a cross-
modal contrasting objective along with an online cluster-
ing head to segment visual embeddings. Finally, GroupViT
[56] proposes a modified ViT architecture which allows
grouping semantically similar tokens into clusters useful for
open vocabulary segmentation. To the best of our knowl-
edge, ViL-Seg and Group-ViT are the only existing methods
which solely use image-text data for training an open vocab-
ulary semantic segmentation model. In our work, we pro-
pose a simple modification to the CLIP compatibility func-
tion for contrastive loss, which enables training an align-
ment between the patch tokens of a ViT based vision en-
coder and the CLS token of a text encoder. This alignment
can then be seamlessly utilized for the task of semantic seg-
mentation without using any segmentation annotations or
class-agnostic segmentation masks during training.

3. Patch Level Alignment in CLIP
The contrastive training of CLIP ensures that the CLS

tokens obtained from CLIP’s transformer based vision and
text encoders are aligned for similar image-text pairs. How-
ever, such an alignment between image and text at a patch
level does not necessarily exist. To empirically study this,
we use a semantic segmentation dataset, Pascal VOC [16],
and classify each patch in the dataset to one of a fixed set
of classes. The patch level vision tokens are classified us-

Figure 2. Patch level alignment between the word “cat” and
images of cats. In the first row, we show the original images, in
the second row, we show the patch level alignment in CLIP ViT-
B/16 and in the third row, we show the alignment for our method.

Patch Classification Accuracy
CLIP Vision Encoder Pre-Alignment Post-Alignment

ViT-B-16 52.49 96.51
ViT-L/14 27.91 95.33

Table 1. Accuracy for patch level clas-
sification on Pascal VOC. For a pre-
trained CLIP model, the accuracy is low
indicating low patch level alignment be-
tween image and text. On applying
our PACL alignment method, the ac-
curacy significantly increases for both
CLIP encoders indicating higher image
text patch level alignment.
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Figure 3. ROC curve
indicating semantic co-
herence of CLIP and
DINO vision encoders.
CLIP encoders outper-
form DINO.

ing the same zero-shot classification [41] method normally
used on the CLS vision token. The classification accuracy,
thus obtained, provides a measure of patch level alignment
between the vision and text representations in the model,
where a high classification accuracy indicates a high align-
ment and vice-versa.

More formally, let Dseg = (x,y)Ni=1 be the seman-
tic segmentation dataset where x ∈ RC,H,W and y ∈
RH,W . We represent CLIP’s vision and text encoders as
fv : RC,H,W → RDv and ft : Rl → RDt respectively.
Similarly, let ev : RDv → RD and et : RDt → RD be the
linear embedders to project the vision and text encodings
to the joint D dimensional space. Normally, for zero-shot
classification, we measure the cosine similarity between the
vision and text embeddings: s(x, c) = ev(fv(x))

|ev(fv(x))| ·
et(ft(c))
|et(ft(c))|

for each class name c and compute the predictive probabil-
ity as: p(c|x) = es(x,c)∑

c′ e
s(x,c′) . A simple modification to the

vision encoder: f̂v : RC,H,W → RT,Dv , where T is the
number of tokens or patches, allows us to perform the same
classification method on every patch.

In Table 1 second column (Pre-Alignment), we show the
patch classification accuracy thus obtained for two CLIP
models: ViT-B/16 and ViT-L/14. In Figure 2, first and



second rows, we show qualitative samples of alignment on
CLIP ViT-B/16, for 4 images of cats from Pascal VOC.
With a patch classification accuracy of 52.49% for ViT-
B/16 and 27.91% for ViT-L/14, it is clear that the alignment
we seek is very poor at the patch level. Surprisingly, note
that for ViT-L/14, a model known to provide better image
level prediction performance than ViT-B/16, the patch level
alignment is significantly worse. Hence, pre-trained CLIP
models cannot be used for open vocabulary segmentation
as the CLIP contrastive learning objective does not ensure
patch level alignment between image and text modalities.

4. Semantic Coherence in Vision Encoders

Due to the poor patch level alignment between pre-
trained CLIP image and text encoders, our next question
is whether we can train such an alignment in CLIP. This
would however require the pre-trained vision encoder to be
sematically coherent. In other words, semantically similar
regions in an image should produce similar patch represen-
tations in the vision encoder. This property has been studied
before in image self-supervised models like DINO [19]. We
use a similar test to quantify semantic coherence of CLIP’s
vision encoders.

In particular, we collect all patch representations from
the vision encoder for each image in Pascal VOC and store
the corresponding target classes using the segmentation la-
bels. Let f̂v(x1)i,j ∈ RDv and f̂v(x2)p,q ∈ RDv be
the patch representations obtained at index (i, j) of image
x1 and index (p, q) of image x2 respectively. We com-

pute the cosine similarity
(

f̂v(x1)i,j

|f̂v(x1)i,j |
· f̂v(x2)p,q

|f̂v(x2)p,q|

)
between

the patch representations and use this as a binary classi-
fier to predict if the two patches have the same target la-
bel. Let the segmentation labels for the two patches be
l(x1)i,j and l(x2)p,q respectively. Since we have labels for
each pixel, we decide the label for each patch by majority-
voting. The target value for binary classification is 1 if
l(x1)i,j = l(x2)p,q , else 0. Note that performance on this
binary classification task is indicative of semantic coher-
ence, as a good classifier would require patch representa-
tions corresponding to same labels to have high cosine sim-
ilarity and vice-versa.

We present the ROC curve and the AUROC scores for
CLIP and DINO in Figure 3. Surprisingly, we find that
CLIP’s vision encoders outperform DINO on semantic co-
herence1. This is encouraging as it indicates that we can
indeed train a mapping between similar vision tokens and
their corresponding text representations. We also present
qualitative results in Figure 4 where we plot the patch level

1CLIP outperforming DINO on semantic coherence indicates that
CLIP’s vision encoders are good candidates for unsupervised segmentation
approaches like STEGO [19], but further study of this feature is beyond the
scope of this work.

(a) (b) (c) (d) (e)

Figure 4. Qualitative results on semantic coherence between
CLIP and DINO ViT-B/16. a): we show the original image of a
dog class with the patch marker (yellow X near the centre). b, c):
we show CLIP vision encoder cosine similarity across all patches
for the same and a different image of a dog. d, e): we show the
same for DINO. See more examples in Appendix B.1.

cosine similarity between a chosen patch (marked in yellow
X in Figure 4a) and the remaining patches in the same im-
age as well as a different image having the same class (dog).
We do this for CLIP ViT-B/16 in Figure 4b and Figure 4c
and for DINO ViT-B/16 in Figure 4d and Figure 4e. In both
cases, CLIP’s encoder seems to perform at par or better than
DINO. Motivated by these observations, in the next section,
we discuss a method to train a patch level alignment be-
tween the vision tokens and the CLS text token in CLIP
using purely image-text data.

5. Patch Aligned Contrastive Learning (PACL)

In the previous section, we showed that although CLIP
lacks a patch level alignment between image and text repre-
sentations, such an alignment can indeed be trained. How-
ever, note that this is a difficult problem as there is no
ground-truth text data annotating each patch in an image-
text dataset. Hence, training such an alignment can only
be done in a weakly supervised fashion. Inspired from pre-
vious work on weakly supervised phrase grounding [18],
in this section, we propose a modification on CLIP’s con-
trastive loss, to learn an alignment between the vision patch
tokens and the CLS text token.

A modified compatibility function for contrastive
loss: Our method is simple in the sense that the only change
we make to CLIP’s training is in the compatibility func-
tion of its contrastive loss. Normally, for an image-text
pair (x,y), CLIP computes the CLS vision and text em-
beddings as ev(fv(x)) and et(ft(y)) respectively, where
fv : RC,H,W → RDv , ft : RL → RDt are the vision and
text encoders and ev : RDv → RD, et : RDt → RD are
the vision and text embedders to project the representations
into the same dimensional space. The compatibility func-
tion ϕ(x,y) is the cosine similarity between the vision and
text CLS embeddings: ϕ(x,y) =

(
ev(fv(x))
|ev(fv(x))| ·

et(ft(y))
|et(ft(y))|

)
.

Given this compatibility function, CLIP uses the InfoNCE
[38] contrastive loss to learn vision and text representations



which are aligned for similar image-text pairs:

Lx =
1

k

k∑
i=1

(
eϕ(xi,yi)∑k
j=1 e

ϕ(xi,yj)

)

Ly =
1

k

k∑
i=1

(
eϕ(xi,yi)∑k
j=1 e

ϕ(xj,yi)

) (1)

with the contrastive loss being LInfoNCE = 1/2(Lx + Ly).
Note that the above loss function produces an alignment

between the CLS image and text tokens but as we observed
in Section 3, it does not produce the desired alignment at
patch level between vision and text encoders. In order to
then train this alignment, we make the following changes
to CLIP’s loss. First, we use the patch tokens instead of
the CLS token from the vision encoder, f̂v : RC,H,W →
RT,Dv , where T is the number of tokens or patches. Next,
we use a modified vision embedder êv : RT,Dv → RT,D to
generate embeddings in the shared D-dimensional space for
all patch tokens. We compute the patch level similarity

s(x,y) = êv(f̂v(x))et(ft(y)) (2)

between all vision patch embeddings and the CLS text em-
bedding, where s(x,y) ∈ RT . We normalize the patch level
similarity to the range [0, 1] by applying a softmax func-
tion across tokens, a(x,y) = softmax(s(x,y)). Finally,
we take a weighted sum across all vision patch embeddings
where the weights of the tokens are obtained from the patch
level similarities a(x,y) as:

v̂ = êv(f̂v(x))
⊺a(x,y) (3)

where v̂ ∈ RD. The updated compatibility function ϕ̂(x,y)
is then computed as the following dot product:

ϕ̂(x,y) =

(
v̂

|v̂|
· et(ft(y))

|et(ft(y))|

)
. (4)

We use this modified compatibility function with In-
foNCE contrastive loss for training and we call this method
Patch Aligned Contrastive Learning. Figure 5, shows a di-
agrammatic representation of the steps involved in comput-
ing the compatibility function for an image-text pair.

Grounded in Mutual Information: To understand
how our compatibility function ϕ̂(x,y) works, we go back
to the relation of the InfoNCE [38] loss with mutual in-
formation (MI). Let x ∈ X and y ∈ Y be two multi-
variate random variables with a joint probability function
p(x, y). MI between x and y, computed as I[x, y] =

E(x,y)∼p(x,y) log
[

p(x,y)
p(x)p(y)

]
, captures the amount of infor-

mation shared between x and y. However, MI is compu-
tationally intractable and hence requires approximations in
order to be estimated. The InfoNCE loss LInfoNCE(θ) de-
fined using a compatibility function ϕθ(x, y) with model

parameters θ provides such an estimate and is a lower bound
on MI as: I[x, y] ≥ log(k) − LInfoNCE(θ), where k is
the batch size in InfoNCE loss with one positive sample
and k − 1 negative samples per batch. Hence, minimizing
LInfoNCE maximises the lower bound estimate of MI.

In vanilla CLIP training, the random variables x and
y are images x and texts y respectively, the compatibil-
ity function ϕθ(x, y) is ϕ(x,y), i.e., the cosine similarity
between CLS vision and text token embeddings, and the
model parameters are θ = {fv, ev, ft, et}. Since, we mod-
ify the compatibility function ϕ̂(x,y) using a weighted sum
over vision tokens, to maximise MI I[x, y] between image
and text, LInfoNCE will have to attend to regions of the im-
age which correspond to the text and assign such regions
a higher value in s(x,y). This indicates that s(x,y) intu-
itively captures patch level alignment between image and
text modalities. To empirically verify this, we conduct the
same patch level classification task described in Section 3
where for each patch, we compute the similarity s(x,y) for
all classes and predict the class with the highest similarity.
Results are in Table 1, third column (Post-Alignment) with
qualitative results in Figure 2, third row. In both cases, we
indeed observe a stark improvement in patch level align-
ment compared to vanilla CLIP using our modified compat-
ibility function.

It is worth noting here that a similar contrastive learn-
ing approach has been used for the problem of weakly su-
pervised phrase grounding in [18]. Their approach learns
a mapping between ROI features from an object detector
and word representations from a language model using an
attention based weakly supervised contrastive learning. Al-
though similar to our approach, they require the use of an
object detector to provide ROI features, whereas we use
CLIP’s vision encoder patch tokens as region features, hav-
ing shown (see Section 4) that such features indeed are se-
mantically coherent. Furthermore, they also use a contex-
tualised language model to generate negative samples for
contrastive loss, whereas our method fits in seamlessly with
the contrastive setting in CLIP. Finally, whereas they tar-
get weakly supervised phrase grounding, we aim to learn
a multi-modal model which is zero-shot transferable to the
task of open vocabulary semantic segmentation.

Inference: At inference time, we can compute both im-
age level as well as dense predictions. For image level pre-
dictions, similar to CLIP, we simply use our compatibility
function ϕ̂(x,y) to compute similarity between an image
and text. For semantic segmentation, given an image x
and a set of classnames Y = {y1, ...,yC}, we compute
s(x,yc) ∀c ∈ {1, ..., C} as a mask for each class and then
use a softmax across classes. In the next section, we pro-
vide a detailed set of experiments to show the performance
of our approach at both zero-shot semantic segmentation as
well as image classification tasks.



Figure 5. Compatibility function ϕ(x,y) for Patch Aligned Contrastive Learning (PACL). The image encoder f̂v and embedder êv
produce patch level representations for each image whereas the text encoder ft and embedder et produce the CLS representation for a
given text. We compute the cosine similarity between the CLS text embedding and the vision patch embeddings and use them as weights
to take a weighted sum over vision patch tokens. We use the cosine similarity between the weighted sum and the CLS text token as our
compatibility ϕ̂(x,y).

6. Experiments & Discussion

6.1. Zero-shot Semantic Segmentation

In the previous section, we described PACL, a multi-
modal contrastive objective to train an alignment between
vision patch embeddings and CLS text embeddings in CLIP.
In this section, we evaluate the quality of this alignment
through zero-shot transfer to semantic segmentation. We
present implementation and training details for PACL, eval-
uation settings for zero-shot segmentation, and finally, re-
sults and a discussion on the same.

Training a small vision embedder: In Section 4, we
have shown that CLIP’s pre-trained vision encoders f̂v have
a relatively strong semantic coherence. In order to leverage
this coherence and the large scale pre-training of CLIP, we
keep the image encoder f̂v , the text encoder ft and the text
embedder et frozen from a pre-trained CLIP model. We
only train the vision embedder, i.e., θ = {êv}. Note that
the modification of the vision encoder from fv (outputs the
CLS vision token) to f̂v (outputs the patch tokens) does not
require any re-training. For êv , we use a residual block with
two linear layers in the main branch and a single linear layer
in the residual connection, There is a ReLU non-linearity
between the two linear layers (see Appendix A.1). We find
this simple architecture to work well for our applications.

Image-text datasets for training: We train our model
purely on publicly available image-text datasets. In partic-
ular, we use Google Conceptual Captions (GCC) 3M [44],
Google Conceptual Captions (GCC) 12M [6] and YFCC-
15M, a subset of YFCC-100M [46] provided by CLIP [41],
with a total number of approximately 30M training sam-
ples. Similar to GroupViT [56], in addition to the text de-
scriptions in the datasets, we extract nouns from these de-
scriptions, and randomly select one of 7 CLIP prompts (like
“itap of a ().”, see Appendix A.2.2), to form sentences with

these nouns. We add these sentences to the text descrip-
tions as well. More details on the datasets can be found in
Appendix A.3. Note that we do not use any segmentation
annotations or class-agnostic segmentation masks during
training. Further training details are in Appendix A.2.

Stride trick at inference: Since CLIP ViT-B/16 and
ViT-L/14 use either 16 × 16 or 14 × 14 patches, the num-
ber of tokens generated is much smaller than the number
of pixels, which is a problem for fine-grained predictions
in segmentation. One workaround is to upscale the image
at inference time to a larger size. We however find instead
that a change to the stride of the convolutional layer to ex-
tract image patches in ViT can provide better fine-grained
patches at inference time. In particular, we use a stride of
4× 4 and upscale the resulting segmentations to image size
using bi-linear interpolation.

Segmentation datasets for evaluation: Similar to re-
cent works [17, 56] on zero-shot semantic segmentation,
we use the following datasets for evaluation: a) Pascal
VOC [16] (PV-20): 20 foreground classes with 1449 vali-
dation images, b) Pascal Context [36] (PC-59): 59 classes
with 5k validation images, c) COCO Stuff [4] (CS-171):
171 “thing” or “stuff” classes and 5k validation images, d)
ADE20K [63] (A-150): 150 classes with 2k validation im-
ages. Further details on these datasets can be found in Ap-
pendix A.3. For all datasets, we report the mean intersection
over union (mIoU) [16], the most popular evaluation metric
for semantic segmentation.

Comparative Baselines: We compare PACL with some
of the most recently published methods on zero-shot se-
mantic segmentation. In particular, we use LSeg [28], ViL-
Seg [32], GroupViT [56] and OpenSeg [17] as comparative
baselines. In addition, we also compare with two relatively
older approaches in zero-shot segmentation: SPNet [55] and
ZS3Net [3]. Note that some of these methods work under



Figure 6. Qualitative results on zero-shot semantic segmenta-
tion. The first row denotes the original images, the second row
shows the corresponding labels, the third row shows results ob-
tained from a vanilla CLIP ViT-B/16, and the fourth row shows
results of our method, PACL trained on a CLIP ViT-B/16 encoder.
The first 3 images from the left are from Pascal VOC and the next
3 images are from ADE20K.

relatively relaxed constraints. In particular, SPNet, ZS3Net
and LSeg use full segmentation annotations during train-
ing and OpenSeg uses class-agnostic segmentation masks.
Furthermore, unlike us, ViL-Seg, SPNet and ZS3Net eval-
uate on a small subset of “unseen” classes from Pascal
VOC, Pascal Context and COCO Stuff. To our knowledge,
GroupViT and ViL-Seg are the only two methods which
solely use image-text data for training. We also add a base-
line using vanilla CLIP by taking the alignment between the
vision patch embeddings and the text CLS embedding from
CLIP’s pre-trained model.

Results & discussion: In Table 2, we report the mIoU
for each baseline on the 4 segmentation datasets mentioned
above. Note that the numbers shown for SPNet, ZS3Net
and ViL-Seg are obtained from the ViL-Seg paper [32] and
the numbers for all other baselines are obtained from their
respective papers (cited in the table). In Figure 6, we show
qualitative results of our method (i.e., PACL + CLIP) on
PascalVOC and ADE20K images (more in Appendix B.2).
With mIoU scores of 72.3, 50.1, 38.8 and 31.4 on Pascal
VOC, Pascal Context, COCO Stuff and ADE20K respec-
tively, it is clear that PACL outperforms all other baselines
consistently even though it works under a stricter set of as-
sumptions, i.e., it does not use any segmentation annotations
and is evaluated on all classes of the segmentation datasets.
This is further corroborated from our qualitative results in
Figure 6. It is interesting to note from Figure 6 that vanilla
CLIP mostly seems to identify the correct classes in its pre-
dictions, just not the locations of those classes within the
image. This relates to the problem of a lack of alignment
between the CLS text token and the vision patch tokens
which we had seen earlier (see Figure 2) and this problem
is solved through the introduction of the PACL contrastive
objective. Since PACL, as an approach, is not tied to any
particular encoder, we next test its performance using dif-
ferent pre-trained encoders as well as different datasets on
the zero-shot segmentation task.

(a) GT (b) DINO B/16 (c) CLIP L/14 (d) CLIP B/16
Figure 7. Qualitative results comparing segmentation of differ-
ent encoders using PACL. We use 3 images from PASCAL VOC
val set and show their segmentations for DINO ViT-B/16, CLIP
ViT-L/14 and CLIP ViT-B/16.

Ablations on datasets and encoders: We perform an
ablation by training PACL on a combination of different
image-text training sets and different pre-trained vision en-
coders. For vision encoders we use CLIP ViT-B/16, CLIP
ViT-L/14 and also use DINO’s [5] ViT-B/16 models. For
training sets, we use GCC12M, (GCC12M + YFCC15M)
and (GCC3M + GCC12M + YFCC15M). We report the
mIoU obtained on Pascal VOC from each of the (model,
dataset) combinations in Table 3.

These results provide two surprising observations.
Firstly, PACL seems to generate an alignment even between
DINO’s pre-trained vision encoder and CLIP’s text encoder,
although these encoders have been trained separately and
independently of each other. With an mIoU of 55.4, even
the worst performing DINO baseline outperforms all com-
petitive zero-shot segmentation baselines in Table 2 except
OpenSeg. Secondly, PACL trained using CLIP’s ViT-B/16
consistently outperforms ViT-L/14 even though ViT-L/14 is
known to be a clear winner in terms of image level zero-
shot tasks. In fact, there is a trend in performance where
CLIP ViT-B/16 outperforms CLIP ViT-L/14 which outper-
forms DINO ViT-B/16. This is also noticeable in Figure 7
where CLIP encoders generate relatively better segmenta-
tion masks than DINO. This observation is strongly remi-
niscent of the one in Section 4 and Figure 3, where we note
that semantic coherence2 is strongest in CLIP ViT-B/16 fol-
lowed by CLIP ViT-L/14 and finally by DINO ViT-B/16.
These empirical observations suggest that PACL is a gen-
eral contrastive learning method which can be used to train
a patch level alignment and works independent of vision
and text encoders as long as the vision encoders exhibit
the property of semantic coherence. Indeed, semantic co-
herence seems to be the most important factor behind the
success of PACL.

2Semantic coherence is the property which enables a vision encoder to
generate similar patch/token level representations for semantically similar
regions of an image.



External Constraints mIoU
Method Encoder Training Set Annotation Mask PV-20 [16] PC-59 [36] CS-171 [4] A-150 [63]

SPNet [55] ResNet-101 ✗ ✓ ✗ 15.6 4.0 8.7 -
ZS3Net [3] ResNet-101 ✗ ✓ ✗ 17.7 7.7 9.6 -
LSeg [28] ViT-L/16 ✗ ✓ ✗ 52.3 - - -

OpenSeg [17] EfficientNet-B7 COCO [9] + Loc. Narr. [40] ✗ ✓ 72.2 48.2 - 28.6
ViL-Seg [32] ViT-B/16 GCC12M [6] ✗ ✗ 34.4 16.3 16.4 -

GroupViT [56] ViT-S/16 GCC12M [6] + YFCC15M [41, 46] ✗ ✗ 52.3 22.4 24.3 -

CLIP [41] ViT-B/16 WIT-400M [41] ✗ ✗ 8.4 2.3 2.6 1.3

CLIP + PACL (Ours) ViT-B/16 GCC3M [44] + GCC12M [6] + YFCC15M [41, 46] ✗ ✗ 72.3 50.1 38.8 31.4

Table 2. Results on zero-shot semantic segmentation on Pascal VOC (PV-20), Pascal Context (PC-59) and COCO Stuff (CS-171) and
ADE20K (A-150) datasets. We provide the encoder architecture, external training dataset (if any) as well as if those methods use segmen-
tation annotations or class-agnostic segmentation masks. Our method (CLIP + PACL) consistently outperforms all previous approaches.

Dataset Vision Encoder Text Encoder mIoU PV-20

GCC12M
CLIP B/16 B/16 64.1
CLIP L/14 L/14 62.7
DINO B/16 B/16 55.4

GCC12M + YFCC15M
CLIP B/16 B/16 69.2
CLIP L/14 L/14 68.4
DINO B/16 B/16 62.6

GCC3M + GCC12M + YFCC15M
CLIP B/16 B/16 72.3
CLIP L/14 L/14 71.7
DINO B/16 B/16 64.8

Table 3. Ablation on zero-shot segmentation across encoder
architectures and datasets on Pascal VOC (PV-20). In the Text
Encoder column, B/16(L/14) indicates the pre-trained text encoder
trained for CLIP ViT-B/16(L/14).

6.2. Image Classification & Future Work

In Section 5, we mention that the modified compatibility
function of PACL can be used to make image level predic-
tions, similar to CLIP. In this section, we test our PACL
models on zero-shot image classification. We then end with
a discussion of possible future avenues from our work.

Zero-shot image classification results: We apply PACL
trained using CLIP ViT-B/16 and ViT-L/14 encoders on
(GCC3M + GCC12M + YFCC15M) to zero-shot image
classification on 12 different datasets including ImageNet
[14], 4 datasets considered to be standard distribution
shifts on ImageNet: ImageNet-A [21], ImageNet-R [20],
ImageNet-Sketch [48] and ImageNet-V2 [42], as well as
7 other standard classification datasets, detailed in Ap-
pendix A.3. We report the difference in classification ac-
curacy between PACL + CLIP and vanilla CLIP for all the
datasets in Figure 8 (all classification accuracies in Ap-
pendix B.3). PACL + CLIP outperforms vanilla CLIP on
10 and 7 out of the 12 classification datasets for ViT-B/16
and ViT-L/14 encoders respectively. Also note that except
on ImageNet-R for ViT-L/14, PACL consistently outper-
forms vanilla CLIP on ImageNet and its distribution shifts.
This observation is encouraging as it provides evidence in
favour of our approach being applicable for image level ap-
plications in addition to segmentation. In the remainder of
this section, we discuss possible avenues for future research
from our work.

Exploring PACL for image-level applications: As
seen above, since PACL is a general compatibility func-
tion for contrastive loss, it can be applied to all image level
tasks. We show this through zero-shot image classification.
However, it would be interesting to further explore PACL
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Figure 8. Zero-shot image classification performance of PACL
+ CLIP vs vanilla CLIP on 12 datasets. PACL + CLIP is com-
petitive with or outperforms CLIP on most datasets.

as an independent contrastive learning method. In partic-
ular, training models from scratch on PACL instead of the
standard CLIP loss might provide additional benefits in the
context of general VLP tasks like image-text retrieval [50].
Since our work is focused around zero-shot semantic seg-
mentation, we keep this exploration out of the scope of this
work and as potential avenue for future research.

Exploring other ways to generate patch level align-
ment: All the current methods on zero-shot open vocab-
ulary segmentation, including ours, use CLIP like models,
i.e., models with individual vision and text encoders with
a fusion of modalities at the end of the encoders. How-
ever, there could be other ways of fusing modalities which
could also lead to a generation of patch level alignment be-
tween image and text. In particular, one of the seemingly
likely candidates of multi-modal fusion for generating patch
level alignment could be cross-attention between image and
text tokens, often seen in architectures used in VLP train-
ing [25, 31, 45] etc. Studying the patch level alignment in
these models to see if they can be transferred to dense pre-
diction tasks is also an interesting area of future exploration.

7. Conclusion
In this work, we explored Patch Aligned Contrastive

Learning (PACL), a modified compatibility function for
image-text contrastive loss which learns an alignment be-
tween patch tokens obtained from a ViT based vision en-
coder and the CLS token from a text encoder. We show
that such an alignment allows a model to identify regions
of an image corresponding to a given text input, thereby en-
abling a seamless zero-shot transfer to the task of semantic
segmentation, without requiring any segmentation annota-



tions or masks during training. On 4 different segmentation
datasets, we beat previous approaches on zero-shot open
vocabulary segmentation, including the ones which use ex-
pensive segmentation annotations or masks for training. Fi-
nally, we show that PACL can also be used to make image
level predictions and, when used with a pre-trained CLIP
encoder, provides a general improvement in classification
accuracy across 12 different image classification datasets.
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A. Additional Implementation Details
In this section, we describe the implementation de-

tails for the proposed PACL method. Particularly, in Ap-
pendix A.1, we describe the architecture of the vision em-
bedder used for training PACL, in Appendix A.2, we de-
scribe specifics of training including hyperparameters and
prompt engineering details. Finally, in Appendix A.3, we
describe details of image-text datasets used for training as
well as segmentation and image classification datasets used
for evaluation.

A.1. Vision Embedder Architecture

In Section 6.1, we have discussed that the proposed
PACL approach is flexible in the sense that PACL can be ap-
plied using pre-trained frozen encoders. Particularly, since
CLIP’s pre-trained vision encoders have desirable proper-
ties (see Semantic Coherence in Section 4), we use these
pre-trained encoders from CLIP to train PACL to transfer
to the task of zero-shot semantic segmentation. This sim-
plifies the training to just a small vision embedder on top
of the vision encoder. In this section and in Figure 9, we
present the architecture of the Vision embedder. In partic-
ular, we use a single residual block with two linear layers
in the main branch and a single linear layer in the residual
branch. There is a ReLU non-linearity between the two lin-
ear layers in the main branch. The resulting model requires
training a mere 1.1M parameters whereas the architecture
has a total of 150M parameters for CLIP ViT-B/16. This
helps us in scaling up and training on a larger batch size for
our experiments as there is no gradient propagation through
the frozen image and text encoders.

A.2. Training details for Vision Embedder

In Appendix A.2.1, we describe the architecture of pre-
trained encoders as well as the hyperparameters used for
training the PACL models. In Appendix A.2.2, we pro-
vide some details on CLIP’s prompt engineering used to
derive best results from the text encoder of a pre-trained
CLIP model.

A.2.1 Architecture and Hyperparameters

As mentioned above, we only train PACL using a Vision
embedder on top of a pre-trained CLIP vision encoder. This
allows us the flexibility not only of using multiple pre-
trained vision encoders but also combinations of different
vision and text encoders. In Section 6.1, we show an ab-
lation with combinations of different pre-trained vision and
text encoders. In particular, we use: a) CLIP ViT-B/16 vi-
sion and text encoders, b) CLIP ViT-L/14 vision and text
encoders and b) DINO ViT-B/16 vision encoder with CLIP
ViT-B/16 text encoder. For each of these combinations, we
train a vision embedder as discussed in Appendix A.1 and

Figure 9. Vision embedder êv architecture for PACL. The
image encoder f̂v produces token/patch-wise representations
f̂v(x) ∈ RT,Dv of an input image x. The vision embedder êv
converts the patch-wise representations to the multi-modal shared
dimensional space, êv(f̂v(x)) ∈ RT,D where T is the number of
tokens or patches.

report zero-shot semantic segmentation results in Table 3 of
the main paper.

All our models are trained on a single node with 4
NVIDIA A100 GPUs with a GPU memory of 40GB in each
GPU. We use AdamW as the optimizer with beta values 0.9
and 0.98, an eps value of 1e − 6 and a weight decay of
0.2. We use an initial learning rate of 5e − 4 and reduce
the learning rate using a Cosine Annealing schedule where
the maximum number of iterations is set as the total num-
ber of iterations during training (i.e., number of epochs ×
number of iterations per epoch). We use a batch size of
4096 (1024 per GPU) and train the model for a total of 10
epochs on image-text data. We do not use any segmentation
annotations or class-agnostic segmentation masks during
training. We provide details on these image-text datasets in
Appendix A.3. When the training dataset is a combination
of GCC-3M, GCC-12M and YFCC-15M, the model takes
10 days to train on 4 NVIDIA A100 GPUs.

A.2.2 Prompt Engineering

Since we use CLIP’s [41] pre-trained text encoders, we fol-
low the prompt engineering guidelines following CLIP’s
OpenAI repository during inference time. In particular, dur-
ing inference, we compute the average embedding from
the text encoder using a set of 7 prompts: itap of
a ()., a bad photo of the ()., a origami
()., a photo of the large ()., a () in a
video game., art of the (), a photo of the
small (), where we put the name of the class within the
parenthesis (). We use the mean of the embeddings from
the the prompts for each class in order to compute cosine
similarity with the patch representations from the vision en-
coder. This is similar to the way CLIP performs zero-shot
image classification, however CLIP uses only the CLS to-
ken from the vision encoder to compute cosine similarity.

A.3. Training and Evaluation Datasets

Image-text datasets for training: We use primarily
3 different image-text datasets for training all our mod-
els. Firstly, we use Google Conceptual Captions (GCC)



3M, which contains approximately 3 million images, each
annotated with a caption. The images are scraped from
the web and the corresponding captions are obtained from
the Al-text HTML data associated with each image from
the web. Secondly, we use Google Conceptual Captions
(GCC) 12M, which is similar to GCC-3M but containing a
much larger corpus of image-text pairs with approximately
12 million samples. The primary purpose of GCC-12M is
for pre-training whereas GCC-3M is a relatively less noisy
dataset meant for fine-tuning pre-trained models. Thirdly,
we use YFCC-15M, a subset of 15 million samples from
the popular YFCC-100M [46] dataset, which is one of the
largest publicly available datasets containing image-text in-
formation obtained from Flickr. The subset of approxi-
mately 15 million images is defined by CLIP [41] by filter-
ing images from YFCC-100M with natural language titles
and/or descriptions in English.

Semantic segmentation datasets for zero-shot seg-
mentation: We use the following semantic segmenta-
tion datasets for zero-shot evaluation on the task of se-
mantic segmentation: a) Pascal VOC [16]: it has 20 fore-
ground classes and 1 background class with 1449 vali-
dation images. We measure performance only on fore-
ground classes and mask predictions with entropy above 1.5
as background, b) Pascal Context [36]: it has 59 classes
with 5k validation images of indoor and outdoor scenes,
c) COCO Stuff [4]: it has 172 classes categorised into ei-
ther “thing” classes or “stuff” classes and has 5k valida-
tion images, d) ADE20K [63]: the version we evaluate on
is widely used and has 150 classes with 2k validation im-
ages. For all datasets, we report the mean intersection over
union (mIoU), the most popular evaluation metric for se-
mantic segmentation.

Image classification datasets for zero-shot classifica-
tion: We evaluate PACL on a suite of 12 image classifica-
tion datasets which include ImageNet [14], 4 well-known
distribution shifts on ImageNet as well as 7 other popu-
lar image classification datasets. ImageNet is a very pop-
ular image classification dataset with 1000 classes relating
to concepts contained in the WordNet hierarchy. We use
50000 validation samples in ImageNet for evaluation. The
4 datasets considered to be popular distribution shifts on
ImageNet are: a) ImageNet-A [21] which contains natural
real-world images from 200 classes in ImageNet but which
are mostly mis-classified by well-known ResNet classifiers,
b) ImageNet-R [20] which contains cartoons, graphics and
other art renditions of images from 200 classes in ImageNet,
c) ImageNet-Sketch [48] which contains 50000 validation
images, 50 from each of the 1000 ImageNet classes con-
structed by making the Google search, ”sketch of ()” where
() is the ImageNet class concerned and d) ImageNet-V2 [42]
which has 10000 validation images obtained by following
the same collection procedure as ImageNet original images,

in order to make the distribution of ImageNet-V2 as simi-
lar as possible to ImageNet. The other 7 image classifica-
tion datasets include: a) CIFAR-10 [27] having 10000 test
images from 10 classes including different types of auto-
mobiles and animals, b) CIFAR-100 [27] having 10000 test
images from 100 classes instead of 10 obtained in a simi-
lar fashion as CIFAR-10, c) Stanford Cars [26] with 8041
test images containing cars of different makes and models,
d) Caltech-101 [30] having 101 categories of images with
40-800 images per class, e) Food-101 [2] containing 101
classes of food items organized by the type of food, with
approximately 25000 test images, f) Oxford-IIIT Pets [39],
a dataset with 37 categories of pets with approximately 200
images per class, and g) Flower dataset [37] having 102
different categories of flowers with between 40 and 258 im-
ages for each class.

B. Additional Results
B.1. Semantic Coherence in CLIP

Semantic coherence is a property of ViT based vision
encoders where semantically similar regions of the image
have similar patch/token level representations in the feature
space of the vision encoder. In Section 4 and Figure 4, we
have shown both quantitative and qualitative results com-
paring the semantic coherence of a CLIP and a DINO ViT-
B/16 vision encoders. Particularly, we had seen that CLIP’s
ViT-B/16 vision encoder performs better than DINO. In
Figure 10, we present additional qualitative examples to fur-
ther corroborate our observations in Section 4. We show
qualitative examples from the Bird, Plane and Sheep classes
in Pascal VOC and plot the patch level similarity between
a selected patch from the original image (marked using
a yellow cross) and all patches from the same image as
well as a different image. The similarity is shown using
a heatmap where yellow and red shades indicate high sim-
ilarity and blue shades indicate low similarity. Our obser-
vations are similar to the ones in Section 4, and we see that
CLIP performs competitively or better than DINO. While
DINO seems to cover semantically meaningful regions in
the images, it doesn’t cover the entirety of the relevant ob-
ject. CLIP seems to be doing a better job at covering all the
patches for the object as highly similar to the marked patch,
thereby indicating better semantic coherence.

B.2. Qualitative Segmentation Results

In Figure 6, we showed qualitative results for the task of
zero-shot semantic segmentation on both Pascal VOC and
ADE20K datasets. In this section, we present more qual-
itative results on the same. Particularly, in Figure 11, we
show additional qualitative results on 8 images from Pascal
VOC covering different concepts including bus, cat, dog,
bird, potted plant, bottle and plane. Similarly, in Figure 12,



Datasets
Model Vision Encoder Image Classification ImageNet Shifts

ImageNet [14] C10 [27] C100 [27] Cars [26] Caltech101 [30] Food101 [2] Pets [39] Flowers102 [37] ImageNet-A [21] ImageNet-R [20] ImageNet-Sketch [48] ImageNet-V2 [42]

CLIP ViT-B/16 68.73 91.18 67.88 63.50 85.69 87.52 88.44 61.12 38.88 76.83 48.36 62.21
ViT-L/14 75.96 95.85 76.94 76.9 86.38 92.69 92.91 69.13 55.44 87.32 59.71 70.26

CLIP + PACL (Ours) ViT-B/16 73.61 92.3 69.11 60.7 84.8 89.12 90.1 62.3 42.10 78.1 50.14 65.4
ViT-L/14 78.2 95.13 74.43 74.2 86.25 93.2 93.05 69.7 59.13 85.6 63.23 72.88

Table 4. Zero-shot Image Classification on 12 different datasets. We compare PACL’s performance with vanilla CLIP for both ViT-B/16
and ViT-L/14 encoders. The first 8 datasets are standard image classification datasets: ImageNet, CIFAR-10, CIFAR-100, Stanford Cars,
Caltech101, Food101, OxfordIIITPets, and Flowers102. The remaining 4 datasets are standard distribution shifts on ImageNet: ImageNet-
A, ImageNet-R, ImageNet-Sketch and ImageNet-V2. PACL + CLIP broadly outperforms vanilla CLIP on most of the classification
datasets.

(a) (b) (c) (d) (e)

Figure 10. Additional qualitative results on semantic coherence
between CLIP and DINO ViT-B/16. a): we show the original
image of a class (bird in top row, aeroplane in middle row and
sheep in bottom row) with the patch marker (yellow X near the
centre). b, c): we show CLIP vision encoder cosine similarity
across all patches for the same and a different image of the same
class. d, e): we show the same for DINO.

Figure 11. Additional qualitative results on zero-shot seman-
tic segmentation on Pascal VOC. The first row shows the origi-
nal images, the second row shows the corresponding ground-truth
labels and the third row shows the predictions from our best per-
forming model, i.e., PACL trained using a pre-trained CLIP ViT-
B/16 encoder on GCC-3M + GCC-12M + YFCC-15M.

we provide qualitative segmentation results from various in-
door and outdoor scenes from ADE20K. Similar to our ob-
servations in the main paper, we find that the zero-shot seg-
mentation results are decent and our models can recognise
a large variety of concepts without ever having been trained
on segmentation annotations or masks for any of them. This
shows the potential of using the scale of large image-text
datasets for zero-shot transfer to semantic segmentation.

B.3. Zero-shot Image Classification

In Figure 8 of the main paper, we showed the differ-
ence in zero-shot classification accuracies for PACL models
trained with CLIP backbones as compared to vanilla CLIP
models on a suite of 12 image classification tasks includ-

Figure 12. Additional qualitative results on zero-shot semantic
segmentation on ADE-20K. The first row shows the original im-
ages, the second row shows the corresponding ground-truth labels
and the third row shows the predictions from our best performing
model, i.e., PACL trained using a pre-trained CLIP ViT-B/16 en-
coder on GCC-3M + GCC-12M + YFCC-15M.

ing ImageNet, 4 datasets considered to be distribution shifts
on ImageNet and 7 other well-known image classification
datasets. In this section, we provide the exact classifica-
tion accuracies for all the models on each of the datasets.
We present these results in Table 4. As mentioned in the
main paper, the PACL models outperform vanilla CLIP on
10 out of 12 datasets for the ViT-B/16 model and 7 out of
12 datasets for the ViT-L/14 backbone, thereby broadly out-
performing CLIP on zero-shot image classification.


	. Introduction
	. Related Work
	. Patch Level Alignment in CLIP
	. Semantic Coherence in Vision Encoders
	. Patch Aligned Contrastive Learning (PACL)
	. Experiments & Discussion
	. Zero-shot Semantic Segmentation
	. Image Classification & Future Work

	. Conclusion
	. Additional Implementation Details
	. Vision Embedder Architecture
	. Training details for Vision Embedder
	Architecture and Hyperparameters
	Prompt Engineering

	. Training and Evaluation Datasets

	. Additional Results
	. Semantic Coherence in CLIP
	. Qualitative Segmentation Results
	. Zero-shot Image Classification


