Human painters usually first draw some abstract stuff, then gradually add details. To mimic this process, we learn a generator that first produces high-level abstract features, then gradually generates lower level features and finally the image.

Generative Adversarial Networks (GAN):
• Two networks competing with each other.
• Discriminator D tries to distinguish between real samples and samples generated by generator G.
• G tries to “fool” D.
• G will learn to generate samples similar to real data.

Motivation

A stack of GANs, each GAN generates lower-level features conditioned on higher-level features.

Each generator is trained with three loss terms:
• Adversarial loss: the generated features should be indistinguishable from “real” features.
 $$L_{adv} = E_{\tilde{h}_{t+1}} \sim p_{data}(\tilde{h}_{t+1}) \left[- \log D_G(h_{t+1}, z_{t+1}) \right]$$
• Conditional loss: the generator should make use of the higher-level features it’s conditioned on:
 $$L_{cond} = E_{\tilde{h}_{t+1}} \sim p_{data}(\tilde{h}_{t+1}) \left[f(E_G(\tilde{h}_{t}), h_{t+1}) \right]$$
• Entropy loss: encourage sample diversity by maxi-mizing a variational lower bound on the entropy
 $$L_{cond} = E_{\tilde{h}_{t+1}} \sim p_{data}(\tilde{h}_{t+1}) \left[- \log Q_G(\tilde{v} | \tilde{h}_{t}) \right]$$

Architecture

Background

Quantitative evaluations

• Inception score on CIFAR-10:
 - Method: Score
 - Infusion training [1]: 4.62 ± 0.06
 - ALI [10] (as reported in [63]): 5.34 ± 0.05
 - EGAN-Ent-V [4]: 7.07 ± 0.10
 - LR-GAN [65]: 7.17 ± 0.07
 - Denoising feature matching [63]: 7.72 ± 0.13
 - DCGAN† (with labels, as reported in [61]): 6.58
 - SteinGAN† [61]: 6.35
 - Improved GAN† [53] (best variant): 8.09 ± 0.07
 - AC-GAN† [63]: 8.25 ± 0.07
 - DCGAN (Ladv): 6.16 ± 0.07
 - DCGAN (Ladv + Lcond): 5.40 ± 0.16
 - DCGAN (Ladv + Lcond)†: 5.40 ± 0.08
 - DCGAN (Ladv + Lcond + Lent)†: 7.16 ± 0.10
 - SGAN-no-joint†: 8.37 ± 0.08
 - SGAN†: 8.59 ± 0.12

Real data: 11.24 ± 0.12

† Trained with labels.

Human visual Turing tests on UfAH-1U: We ask AMT workers to distinguish generated images from real images. Our samples “fool” people 24.4% of the time, higher than our best DCGAN baseline (15.6%) and Improved GAN (21.3%).