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Figure 1. TrIVD enables image/video object detection and multi-object tracking within a single model. With the proposed unified
framework, we are uniquely able to conduct zero-shot multi-object tracking on objects (airplanes, pandas, etc.) that have not appeared in
tracking datasets. (Different colors refer to object identities in tracking and different object categories in detection figures.)

Abstract

Objection detection (OD) has been one of the most
fundamental tasks in computer vision. Recent develop-
ments in deep learning have pushed the performance of
image OD to new heights by learning-based, data-driven
approaches. On the other hand, video OD remains less
explored, mostly due to much more expensive data an-
notation needs. At the same time, multi-object track-
ing (MOT) which requires reasoning about track identities
and spatio-temporal trajectories, shares similar spirits with
video OD. However, most MOT datasets are class-specific
(e.g., person-annotated only), which constrains a model’s
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flexibility to perform tracking on other objects. We pro-
pose TrIVD (Tracking and Image-Video Detection), the
first framework that unifies image OD, video OD, and MOT
within one end-to-end model. To handle the discrepancies
and semantic overlaps across datasets, TrIVD formulates
detection/tracking as grounding and reasons about object
categories via visual-text alignments. The unified formu-
lation enables cross-dataset, multi-task training, and thus
equips TrIVD with the ability to leverage frame-level fea-
tures, video-level spatio-temporal relations, as well as track
identity associations. With such joint training, we can now
extend the knowledge from OD data, that comes with much
richer object category annotations, to MOT and achieve
zero-shot tracking capability. Experiments demonstrate that
TrIVD achieves state-of-the-art performances across all
image/video OD and MOT tasks.



1. Introduction
Object detection (OD) consists of a localization and clas-

sification stage, in which the former determines the location
of a potential object and the latter predicts the detected ob-
ject’s category. Traditional detectors address this problem
indirectly, by defining surrogate regression and classifica-
tion problems on a large number of predicted proposals [10,
82], anchors [62], or window centers [94, 117]. Their per-
formance therefore largely depends on the post-processing
steps, e.g., approaches to collapse near-duplicate predic-
tions, design the anchor sets or assign the target boxes to an-
chors [111]. DETR-based methods [12,41,74,120], as fully
end-to-end object detectors, were proposed to eliminate the
need for hand-crafted components via the relation model-
ing capability of vision transformers (ViT) [24]. Coupled
with language encoders and contrastive learning [81], recent
open-vocabulary detection models are further able to lever-
age information from the large amounts of image/object-
text data to boost the model’s performance and further
achieve zero-shot capabilities [33, 47, 58, 74, 108, 110, 115].

However, the above developments mainly focus on im-
age OD, leaving video OD less-explored, largely because
video OD models usually have many bespoke hand-crafted
components, e.g., optical flow [103, 104, 119], which re-
quires prior knowledge from additional flow data. Another
challenge lies in applying advance modern architecture like
ViT on the high-resolution, space-time video OD data due
to the high computational cost incurred by self-attention’s
quadratic complexity [96]. In [41], the authors use a ViT
to extract frame-level features first, and then apply another
ViT to leverage the temporal relations. However, this strat-
egy still faces quadratically increasing self-attention com-
putations w.r.t. input videos’ temporal lengths. We instead
formulate the image and video inputs in a single framework
via decomposed temporal-aware attention (Sec. 3.1), with
only linear computation increase along the temporal axis.

Meanwhile, multi-object tracking (MOT) models the
tracking identities and the spatio-temporal trajectories [71],
and shares similar goals with OD in general on locating po-
tential objects, and with video OD in particular on reasoning
about spatio-temporal relations between adjacent frames.
Recent advances in MOT approaches mainly pursue track-
ing by detection [16,42,50,51,56,57], by regression [6,9,20,
65, 116], or by attention [71, 105, 109, 112]. Built upon the
recent advances of ViTs, tracking-by-attention [71,120] as-
sociates objects across frames via the self-attention mecha-
nism intrinsically introduced by ViTs [24,96], and naturally
relates tracking with frame-level detection. Our model fol-
lows tracking-by-attention mechanism. By inheriting pro-
posed objects from previous frames, we achieve detection
and tracking association simultaneously (Sec. 3.3).

We present a unified framework, TrIVD (Tracking
and Image-Video Detection), which incorporates the three

(image/video OD, MOT) tasks in one end-to-end model.
TrIVD could be trained on image/video OD and MOT
datasets separately, or co-trained in a cross-dataset, multi-
task fashion. We highlight our contributions as follows:
Bridging the gap between image OD and video OD.
Existing OD models are specifically designed for either im-
age or video OD task with insufficient flexibility in handling
inputs containing both images and videos. TrIVD formu-
lates image and video inputs uniformly, with an integrated
temporal-aware attention module to efficiently leverage the
spatio-temporal relations for video inputs (Sec. 3.1).
Connecting MOT with image OD and video OD. We
formulate MOT in a tracking-by-attention fashion [71],
where detection and tracking data association are performed
jointly via self-attention without additional track matching
procedures (Sec. 3.3). This formulation enables the multi-
dataset, multi-task training of TrIVD, and equips TrIVD
with zero-shot tracking ability to track objects that have not
been seen during MOT training (Fig. 1, Fig. 3).
One multi-dataset classifier with region-text alignment.
Class categories vary across different OD/MOT datasets,
yet semantic overlaps may exist. We re-formulate the
class prediction in OD/MOT via phrase grounding [58]
such that TrIVD is given both image/video and a text
prompt containing all the candidate categories to be de-
tected/tracked (Sec. 3.2). By aligning visuals with their
semantic meanings, we intrinsically resolve the class label
discrepancies and semantic overlaps across datasets.
TrIVD achieves state-of-the-art results across image

OD, video OD and MOT (Sec. 4.3). Trained in a multi-
dataset, multi-task fashion, we show that our unified model,
uniquely achieves zero-shot tracking performance, and is
able to track objects without the need for training with their
ground truth tracking identity annotations (Fig. 1, Fig. 3).

2. Related Work
Image Object Detection (Image OD) aims to detect ob-
jects with their associated categories [43]. With the advent
of convolutional neural networks (CNNs), current leading
object detectors are built upon CNNs [11, 40, 54, 89, 93]
and can be generally classified into two main categories:
anchor-based detectors (e.g., R-CNN [31], Fast(er) R-
CNN [30, 82], Cascade R-CNN [10], etc.) and anchor-
free detectors (e.g., CornerNet [55], ExtremeNet [118],
etc.). The former can be further divided into two-stage and
one-stage methods, while the latter falls into the class of
keypoint-based and center-based methods [111].

Recently, Transformers [12, 24, 71, 92, 99, 120] have re-
ceived great attention in computer vision. DETR-based
methods [12, 120] build a fully end-to-end object detec-
tion model based on Transformers, and largely simplify the
traditional detection pipeline [82]. By coupling with lan-
guage encoders and contrastive learning [81], a new stream



of open-vocabulary detection works are able to take advan-
tage of the large amounts of image/object-text grounding
data and further boost the model’s performance and achieve
zero-shot capabilities [33,47,58,74,108,110,115]. TrIVD
builds upon deformable-DETR [120] and resorts to region-
text alignment for a unified classifier, resulting in an end-to-
end, unified model for image/video OD and MOT (Fig. 1).

Video Object Detection (Video OD) requires not only
detecting objects in each frame as image object detection,
but also linking the same objects across frames. One com-
mon solution [15,17,34–36,39,46,61,91,106] is using fea-
ture aggregation to enhance per-frame features by aggre-
gating the features of nearby frames with flow-based warp-
ing [25, 103, 104, 119]. Another line of attention-based
approaches utilize self-attention [96] and non-local infor-
mation [98] to capture long-range dependencies of tem-
poral contexts [8, 17, 21, 23, 39, 45, 102]. Despite making
great progress, most pipelines for video OD are sophisti-
cated and include multiple postprocessing steps as well as
hand-crafted components [1, 5, 37, 48]. TransVOD [41] ap-
plies vision transformers (ViT) to build an end-to-end video
OD model, and handles the spatio-temporal relations by us-
ing a ViT to extract frame-level features, and an additional
ViT for temporal aggregation, which results in a quadratic
increase in self-attention computation along the tempo-
ral axis. In contrast, TrIVD uniformly formulates image
and video inputs with the proposed temporal-aware atten-
tion mechanism to efficiently fuse features across video
frames (Sec. 3.1).

Multi-object Tracking (MOT) models the spatio-
temporal trajectories of tracking identities [71]. Recent
works generally focus on three aspects, tracking by
detection, by regression, or by attention. Tracking-by-
detection tackles MOT by detecting objects frame-wise
and then associating the object identities across adjacent
frames [16, 42, 50, 51, 56, 57]. Tracking-by-regression
applies a continuous regression following the positions
of detected objects between frames [6, 9, 20, 65, 116].
Tracking-by-attention associates objects via the self-
attention [24, 71, 105, 109, 112], and naturally relates
frame-level tracking and detection. We follow tracking-by-
attention approaches, and integrate detection and tracking
in our unified framework (Sec. 3.3). Co-trained on im-
age/video OD and MOT datasets, TrIVD not only achieves
state-of-the-art performance across all the three tasks, but
is able to track novel object categories without the need for
supervised training on their tracking annotations (Fig. 3).

Multi-dataset, Multi-modal and Multi-task Learning
Multi-modal learning architectures allow training separate
encoders for different input modalities, such as image-
text [14,32,49,69,72], video-audio [2,3,76–79] and video-
optical flow [88]. Most multi-modal models assume the in-

put modalities are in correspondence and available simulta-
neously, while TrIVD operates on multi-modal inputs but
yet does not require simultaneous access to all modalities.

Multi-task learning [13] operates on the same input but
output predictions for multiple tasks [26, 28, 52, 70, 75,
113], while our model is able to handle both image and
video inputs, and conduct OD or MOT tasks simultane-
ously (Fig. 1).

3. TrIVD: Tracking & Image-Video Detection
In this section, we introduce TrIVD, the unified tracking

and image-video object detection framework. In Sec. 3.1,
we first describe our unified formulation for image and
video inputs, and propose the temporal-aware attention
mechanism, as an efficient spatio-temporal feature aggre-
gation module for video inputs. In Sec. 3.2, we introduce
our unified classifier via region-text alignment for cross-
dataset co-training, to handle the discrepancy and seman-
tic overlaps across object categories from different datasets.
In Sec. 3.3, we detail and conclude TrIVD’s entire unified
framework for tracking and image-video detection.

3.1. Unified Image-Video Backbone with Temporal-
Aware Deep Fusion

We first introduce our formulation for unifying image
and video inputs when extracting features from the back-
bone, then propose the temporal-aware attention module for
video inputs.

Image/Video Inputs We represent videos as a set of
frames and reshape the temporal dimension (T ) into the
batch dimension (B) to obtain a tensor X ∈ RB′×H×W×C in
which B′ = B∗T is the new batch size, H ×W refers to the
spatial dimensions, and C is the channel dimension. Simi-
larly, we represent images as X ∈ RB×H×W×C.

Backbone While our unified framework can use any vi-
sion transformer architecture [24] to process the image and
video inputs, we adopt the MViTv2 [60] architecture as the
backbone, which hierarchically expands the feature com-
plexity while reducing the spatial resolution via attention-
pooling, given its proven advantage given its better perfor-
mance and efficiency over single-scale vision transformers
for image and video tasks [27, 60].

With our unified input formulation, the backbone model
maps the input 2D patches into a shared representation Φ

for both images and videos, using a 2D linear layer followed
by LayerNorm [4]. Same embedding layers are also applied
to embed all input (image/video) patches to enable maximal
parameter sharing across the two visual modalities. Note
that since all inputs are treated as single-frame images, only
relative positional encoding [87] on the spatial domain is
needed for either images or videos.

Therefore, the frame-level multi-scale features extracted
by MViTv2 [60] are a set of 3D features,
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Figure 2. Overview of TrIVD’s unified framework. With a unified backbone, TrIVD could take both images and videos as inputs, using
the proposed temporal-aware attention for spatio-temporal feature fusion of video features (Sec. 3.1). Depending on specific tasks, TrIVD
performs object detection or tracking (Sec. 3.3). For detection in the unified detection-tracking context, we initialize our transformer
decoder with empty object queries (white boxes). In tracking tasks, we initialize the object queries of current frame in combination with
the detected objects from the previous frame (Sec. 3.3). Formulating the object category prediction as phrase grounding, we determine the
object class by assessing the alignment between the proposed regions and the words in an input text prompt (Sec. 3.2).

F = {Fl | Fl ∈ RB′×Hl×Wl×Cl , l = 1, ..., L}, (1)
where Hl ×Wl refer to the spatial resolution at scale l, and
L denotes the number of spatial scales. Features of video
inputs are then re-shaped to their original dimensions:

F = {Fl |Fl ∈ RB×T×Hl×Wl×Cl , l = 1, ..., L}, (2)
where B, T denote the actual batch size and temporal length
of the inputs respectively, with T ≡ 1 for image inputs.

Our unified input formulation shares similar spirits with
Omnivore [29], however, Omnivore represents both image
and video inputs as videos, i.e., as batches of 4D tensors X ∈
RB×T×H×W×C, where the temporal length (T ) for image in-
puts are set to 1. This results in 3D operations (e.g., 3D
convolutions) and more expensive computations especially
for video OD/MOT problems that require high-resolution
inputs. Instead, we treat video inputs as batches of im-
ages, and conduct frame-level feature extraction first. Spa-
tial features extracted in the backbone are then forwarded
to our temporal-aware sequential attentions as described be-
low, for spatio-temporal feature fusion.1

Temporal-aware Attention One main challenge of
spatio-temporal feature aggregation is the trade-off between
performance and computational cost. Dai et al. [19] propose
dynamic head for image OD, which decomposes attention
on individual feature channels and improves the model’s ef-
ficiency. We further extend this sequential attention idea to

1In fact, we first considered Omnivore [29]’s video formulation as our
unified image-video representation, yet we find the proposed frame-level
feature extraction followed by temporal-aware deep fusion works better.

the temporal dimension of videos. Specifically, given a set
of multi-scale features F (Eq. (2)), we decompose the over-
all attention function π over the space-time domain, i.e.,
W (F) = π(F) ·F, is decomposed into two sequential atten-
tions along spatial and temporal axes:

W (Fl) = πTl

(
πHlWl (Fl)

)
·Fl , l = 1, ..., L, (3)

where πTl (·), πHlWl (·) are two attention functions applied on
the temporal axis (T ), and spatial axis (Hl ×Wl) respectively
(Fig. 2). We follow [19] for its attention design on the spa-
tial domain (πHlWl ), and apply an additional temporal at-
tention module by dynamically aggregating features across
their temporal dimensions:

πTl (Fl) ·Fl =
1
T
·σ

(
f
( 1

HlWl
∑

Hl ,Wl

Fl

))
, l = 1, ..., L, (4)

where f (·) is a linear function approximated by a 1×1 con-
volutional layer and σ is the hard-sigmoid function.

Passing through the two sequential attention modules
across spatial and temporal dimensions, we efficiently ag-
gregate the spatio-temporal features from video inputs, and
also achieve unified feature representations for images and
videos, whose extracted features could be further forwarded
to any downstream task-specific model.

3.2. Unified Cross-dataset Classifier via Grounding
One major task of detection/tracking is the class predic-

tion for each proposed bounding box indicating the detected
object category. Typical detection/tracking models pre-
dict the object class using a linear activation following the



extracted bounding box features, which is usually trained
with the multi-class cross entropy loss or focal loss [63].
However, the above classification losses defined on logit-
encoded class labels are not easily generalizable in the case
of multi-dataset joint-training. Typically, annotated object
class labels vary across different OD/MOT datasets, yet se-
mantic overlaps may exist among them.

One workaround is joint training with dataset-specific
classification layers [29], but this could potentially result in
conflicts due to the non-exhaustive annotations across vary-
ing datasets. A more elegant solution is binary classification
with sigmoid activation [115], where the judgement for ev-
ery object category is independent from others. When the
ground-truth categories are from other datasets, the related
logits are simply masked out during gradient backpropaga-
tion. Yet this strategy still requires re-arranging the class
labels each time a new dataset is added to the training.

Aiming for a more generalized and flexible approach
balancing the mixed object categories and their seman-
tic overlaps, we re-formulate the cross-dataset classifica-
tion problem as phrase grounding [58, 110], i.e., instead
of classifying within C classes, the class prediction is now
achieved by aligning each proposed region to words in a
text prompt. Specifically, during co-training, for each sam-
ple, we concatenate all available object categories in its be-
longed dataset to form a text prompt. For instance, VID [84]
dataset has the label to classname correspondences,

CVID = {1 : airplane, 2 : antelope, ..., 30 : zebra},

then the text prompt associated with samples from VID is

TVID = “airplane antelope ... zebra”,

where each object class is converted to a candidate phrase
to be grounded/aligned, parsed by blank spaces. Therefore,
unlike the classification setting in typical detection/tracking
models, TrIVD does not directly output a class label for
the proposed region/object, but assesses the token positions
(soft tokens) that align with the regions/objects (Fig. 2).

To this end, we replace the regular classification loss
with 1) the soft token loss (Lsoft) [47], to encourage the
predicted token spans to be aligned with the objects’ se-
mantic meanings, and 2) the contrastive alignment loss
(Lcontrastive) [47,58], to increase the similarities between the
visual representations of the proposed objects, and the rep-
resentations of the matched words in the text prompt.

3.3. Unified Tracking and Image-Video Detection
As illustrated in Fig. 2, the proposed TrIVD consists

of two major components: 1) Modality-agnostic visual fea-
ture extraction in the backbone, where one could opt to
conduct frame-level feature extraction for images, or add
spatial-temporal fusion for video inputs with the intro-
duced temporal-aware attention module (Sec. 3.1); 2) Task-
specific detection or tracking as follows.

DETRs Our detector/tracker is built upon the end-to-end
detection framework Deformable DETR [12, 120], as its
self-attention mechanism could be simultaneously adopted
for object detection as well as tracking data association
(Sec. 3.3). Briefly speaking, with a transformer encoder-
decoder structure [96], Deformable DETR is initialized
with a certain number (Nbox) of object bounding boxes (i.e.,
object queries), to detect potentially existing objects in the
boxes. Forwarding through the cross-attention modules in
the transformer’s decoder, the model outputs the final pre-
dictions on the box coordinates along with their associ-
ated class label and confidence score. Deformable DETR
is trained with the Hungarian matching loss, where a bipar-
tite matching is computed between the Nbox predicted object
queries and the ground-truth objects. The matched objects
are encouraged to align with the ground-truth, while the un-
matched ones are treated as background. Cross-entropy loss
is used for classification supervision, L1 loss and General-
ized IoU are used for the bounding box supervision.

Detection-Tracking Bipartite Matching Since TrIVD
does not directly predict class labels, but aligns the to-
ken positions in the text prompt with the proposed ob-
ject (Sec. 3.2), the bipartite matching between the ground
truth and proposed objects do not rely on class labels, but on
the relevant positions of the classname in the text prompt.
- Detection only cares about the proposed objects of the
current frame. Therefore, in a unified detection-tracking
context, we simply treat all detected objects as newly ap-
peared objects, and the bipartite matching happens between
the proposed object queries and the ground truth objects.
- Tracking, in addition to localization and classification
of objects in the current frame, requires the knowledge of
object/track identities across video frames, and faces the
challenges of objects disappearing or re-entering the scene.
Thanks to the self-attention mechanism in transformers [96]
which correlates all components across the entire inputs,
data association across video frames could be achieved
in a detection/tracking-by-attention fashion [12, 71, 120].
Specifically, the frame-to-frame data association is real-
ized by 1) integrating previous frame’s features into cur-
rent frame’s transformer encoder, where a temporal feature
encoding [100] is used to enable queries to discriminate be-
tween features from the previous frame; and 2) adding the
previous detected object queries, named track queries, to
the initialization of new object queries for the current frame,
and together forward into the transformer’s decoder of cur-
rent frame (Fig. 2). In the transformer decoder, comput-
ing self-attention between adjacent frame features as well as
between newly initialized object queries and track queries,
naturally performs the detection of new objects while avoid-
ing re-detection of already detected/tracked objects [71].

Therefore, the bipartite matching for tracking contains
two scenarios. 1) If the objects in the current frame are



t TrackFormer [71] Track “person” (✓) Track “car” (✓) Track “plane” (✓) Track “motorcycle” (✓) Track “bird” (✓) Track “bicycle” (✗)

MOT17 [73] multi-object tracking dataset VID [84] video object detection dataset (Zero-shot multi-object tracking)

Figure 3. With its unified formulation, TrIVD achieves unique capability in zero-shot multi-class, multi-object tracking (Sec. 4.4). 1st

column shows person-tracking results from TrackFormer [71]. TrIVD is not only able to track people (2nd column), but also able to track
the car in the same scene when assigned which category to track (3rd column). Further, TrIVD achieves zero-shot tracking on objects
from VID, which do not exist in the tracking dataset (MOT17) for supervised training (4rd −6th columns). We also show videos with the
challenging problem of objects disappearing and re-entering, where we observe some failure cases (6th column: tracked (✓); 7th column:
failed (✗)).

also present in the previous frame, the mapping depends
on the ground truth track identities [71]; 2) Otherwise, the
mappings to newly-appeared objects or background reduce
to the same matching plan as detection [12, 120].

In summary, the bipartite matching loss, for either de-
tection or tracking, is achieved by solving a minimum cost
assignment problem [12], resulting in the following com-
bined end-to-end training loss for TrIVD:

L = Lsoft +Lcontrastive +Lbox detect +Lbox track , (5)

where Lsoft, Lcontrastive are the object category prediction
losses (Sec. 3.2), L1 loss and Generalized IoU [12] are
used as the box prediction losses for both tracking object
boxes (Lbox track) and newly-appeared/non-object boxes
(Lbox detect). Since for detection tasks, we treat all proposed
objects as new detections, thus Lbox track ≡ 0.

4. Experiments
4.1. Datasets and Metrics
Image and Video Object Detection (OD)
- COCO For image OD, we experiment on the COCO [64]
dataset, with 80 annotated class categories in total. All the
models are trained on the 118K training images and evalu-
ated on the 5K validation images.
- VID For video OD, we experiment on the large-scale
benchmark for video OD, ImageNet VID [84] dataset. It
contains 3862 training videos and 555 validation videos.
VID has 30 annotated class categories in total, among them
13 categories overlap with those in COCO. We also follow

the previous video OD work [23, 97, 104, 106] and include
DET [85] dataset in the training set.
- Metrics For image OD, we use the 6 official metrics
on average precision (AP) from COCO [64], i.e., AP, AP50,
AP75, APS, APM, and APL. For video OD, AP is used as the
evaluation metric following previous work [23,97,104,106].

Multi-object Tracking (MOT)
- MOT17 We train and test our model’s tracking per-
formance on the MOTChallenge benchmark, MOT17 [73].
MOT17 is person-annotated only, and has 7 sequences for
train and test sets respectively.
- Metrics Varying metrics are used for evaluating differ-
ent aspects of MOT performance [7, 71]. We adopt the 7
widely-used metrics [73, 83]: multiple object tracking ac-
curacy (MOTA), identity F1 score (IDF1), mostly tracked
(MT), mostly lost (ML), false positive (FP) and false nega-
tive (FN), and number of identity switches (IDS). A detailed
description on the evaluation metrics is in Appendix A.

4.2. Implementation Details
Training We use MViTv2-s [27, 60] as the backbone,
we follow deformable DETR [120] for its end-to-end
transformer-based structure, and TrackFormer [71] for its
track queries aggregation and augmentations. To make sure
we can cover objects in the crowded scenes in MOT17 [73]
tracking dataset, we set the number of object queries to
Nbox = 500. For the MViTv2-s backbone, we follow [60]
and pre-train the backbone on ImageNet-21K [22] and
fine-tune on COCO with 36 epochs. Our training sched-



Method Backbone Detector AP ↑ AP50 ↑ AP75 ↑ APS ↑ APM ↑ APL ↑

Faster-RCNN [30] ResNet-50 Faster-RCNN 42.0 62.1 45.5 26.6 45.4 53.4
DETR [12] ResNet-50 DETR 42.0 62.4 44.2 20.5 45.8 61.1
DETR-DC5 [12] ResNet-50 DETR 43.3 63.1 45.9 22.5 47.3 61.1
Def-DETR [120] ResNet-50 Def-DETR 43.8 62.6 47.7 26.4 47.1 58.0
Def-DETRbox-refine [120] ResNet-50 Def-DETR 45.4 64.7 49.0 26.8 48.3 61.7

TrIVDsingle MViTv2-s Def-DETR 46.2 65.1 48.9 27.9 48.9 61.6
TrIVDmulti MViTv2-s Def-DETR 46.5 65.7 49.3 27.5 48.9 61.9

Table 1. Comparisons between TrIVD and the state-of-the-art im-
age OD approaches on COCO 2017 validation set. Deformable-
DETR (Def-DETR) [120] could be viewed as our plain baseline
on image OD: TrIVDsingle equals Def-DETR when we switch
the MViTv2-s [60] backbone to ResNet-50 [40].

Method Backbone Detector Nframe AP ↑

DFF [104] ResNet-50 Faster-RCNN 10 70.4
FGFA [103] ResNet-50 Faster-RCNN 21 74.0
RDN [23] ResNet-50 Faster-RCNN 3 76.7
MEGA [17] ResNet-50 Faster-RCNN 9 77.3
TransVOD [106] ResNet-50 Def-DETR 3 77.7
Def-DETR [120] ResNet-50 Def-DETR 1 76.0

TrIVDsingle MViTv2-s Def-DETR 3 77.9
TrIVDmulti MViTv2-s Def-DETR 3 78.3

Table 2. Comparisons between TrIVD and the state-of-the-art
video OD approaches on VID validation set. Nframe refers to
the temporal length of corresponding models’ input video clips.
Deformable-DETR (Def-DETR) [120] could be viewed as our
per-frame detection baseline on video OD: TrIVDsingle reduces
to Def-DETR when we switch the MViTv2-s [60] backbone to
ResNet-50 [40] and perform frame-by-frame detection for VID,
i.e., without temporal-aware attention.

ules follow [120], and we set the batch size as 2 with ini-
tial learning rates of 0.0001 for deformable DETR encoder-
decoder, and 0.00001 for the backbone. For the language
model, we follow [47] and use the HuggingFace [101] pre-
trained RoBERTa-base [66] as our text encoder. We use
a linear decay with warm-up schedule, increasing linearly
to 0.00005 during the first 1% of the total number of steps,
then decreasing linearly back to 0 for the rest of the training.
For more details on training recipes and hyperparameters,
please refer to Appendix A.

Track Re-identification During tracking inference, we
use previously proposed track queries for an attention-based
re-identification process. For a fair comparison, we fol-
low [71] and keep previously removed track queries within
a tolerance of Nreid = 5 frames, during which the track
queries are considered as not active and thus are not used
in the object queries initialization of new frames, unless a
classification score higher than σreid = 0.4 triggers the re-
identification. More track filtering and re-identification de-
tails are provided in Appendix A.

4.3. Individual-dataset Benchmark Results
We explore our unified model’s performance on

COCO [64], VID [84] and MOT17 [73] datasets. To
better illustrate the benefits gained from our unified for-

Method Data Backbone MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓

FAMNet [18] - ResNet-101 52.0 48.7 450 787 14138 253616 3072
Tracktor++ [6] M & C ResNet-101 56.3 55.1 498 831 8866 235449 1987
GSM [65] M & C ResNet-34 56.4 57.8 523 813 14379 230174 1485
CenterTrack [116] - DLA [107] 60.5 55.7 580 777 11599 208577 2540
TMOH [90] - ResNet-101 62.1 62.8 633 739 10951 201195 1897
TrackFormer [71] - ResNet-50 62.3 57.6 688 638 16591 192123 4018

TrIVDsingle - MViTv2-s 62.5 58.1 671 613 15896 190325 4072
TrIVDmulti - MViTv2-s 64.8 60.1 724 598 15332 187232 3967

Table 3. Comparisons between TrIVD and the state-of-the-art
MOT approaches on MOT17 test set (online public detections re-
sults reported). The 2nd column indicates extra tracking data in-
cluded in the training (M: Market1501 [114]; C: CUHK03 [59]).

COCO [64] VID [84] MOT17 [73]

Figure 4. TrIVD’s object detection results on COCO, VID,
and MOT17. With multi-dataset co-training, TrIVD detects ob-
jects (e.g., traffic lights, bicycles, motorcycles) not annotated by
MOT17 (3rd column).

mulation, we explore two training setups for TrIVD. 1)
TrIVDsingle: the proposed TrIVD model, but trained
on individual datasets separately; 2) TrIVDmulti: the
proposed TrIVD model, co-trained on all three datasets
(COCO [64], VID [84], MOT17 [73]) in a multi-dataset,
multi-task fashion.

Tabs. 1-3 compare TrIVD’s performance with the state-
of-the-art approaches on all image OD, video OD and MOT
tasks. TrIVD achieves state-of-the-art performance across
all evaluation metrics on COCO [64], especially on small
objects (APS) (Tab. 1). Comparisons on VID [84] dataset
demonstrate the effectiveness of the proposed temporal-



aware attention module in aggregating spatio-temporal fea-
tures of video inputs (Tab. 2). We also achieve better MOT
performance on MOTA, MT, ML as well as FN, without
the need for training on additional tracking data as used in
[6, 65] (Tab. 3).

Comparisons between the dataset-specific trained model
(TrIVDsingle) and the multi-dataset multi-task jointly
trained model (TrIVDmulti) further illustrate the effec-
tiveness of multi-task co-training with our proposed uni-
fied formulation – TrIVDmulti outperforms TrIVDsingle
over image OD, video OD and MOT tasks, especially for
MOT where we observe an improvement on MOTA by
3.7% (Tab. 3).

4.4. Cross-dataset Visualization Analysis
In Sec. 4.3, we report the benchmark results of TrIVD

on image OD, video OD and MOT tasks. However, with the
unified formulation, TrIVD can achieve much more than
that. 1) TrIVD is able to perform zero-shot tracking, on
objects whose categories do not exist in the tracking train-
ing dataset. 2) With our unified classifier via region-text
alignment, TrIVD’s detection/tracking vocabulary could be
easily scaled up upon co-training with larger datasets, and
achieves open-vocabulary capabilities.

Zero-shot Tracking TrIVD’s unified formulation allows
us to conduct image OD, video OD and MOT within one
model (Fig. 1), and further extend tracking to a wider range
of object categories, achieving zero-shot tracking capabil-
ity. As shown in Fig. 3, designed and trained specifically on
MOT17, a person-tracking dataset, a typical tracking model
such as TrackFormer [71] can detect and track people iden-
tities (Fig. 3, 1st column), but it is not able to track other
object categories that are not annotated in MOT17, e.g.,
cars, birds, pandas. In contrast, with our unified formu-
lation, TrIVD that is co-trained on OD datasets (COCO,
VID) is now able to borrow its knowledge learned from
the detection data and achieve zero-shot tracking on novel
objects without training on their tracking annotations. We
can therefore track both the people and the cars in the same
street view from MOT17 (Fig. 3, 2nd–3rd columns).

We further test TrIVD’s zero-shot tracking ability on
videos from VID (video OD) dataset, where no ground truth
tracking annotation is available (Fig. 1, 2nd–4th columns;
Fig. 3, 4th–7th columns). TrIVD successfully detects and
tracks the objects with their position changes (e.g., airplanes
and pandas in Fig. 1, motorcycles in Fig. 3). TrIVD also
handles object disappearing scenarios well (e.g., cars in
Fig. 1, airplanes in Fig. 3). Besides objects disappearance,
another major challenge for MOT is identifying previously
tracked objects that re-enter the scene — we indeed observe
some failure cases. In Fig. 3, 6th column, TrIVD success-
fully re-identifies the bird (pink) when it re-enters the scene,
but fails to recognize the same bicycle (Fig. 3, 7th column)

Nframe 1 3 5 7 9 11

AP ↑ 76.8 77.9 78.6 79.4 79.2 79.3

Table 4. Ablations on the number of frames aggregated in an
input video clip for video OD on VID [84] dataset (Model:
TrIVDsingle).

under the significant camera view and pose changes, and
identifies it as a new bicycle (blue → green).

Open-vocabulary Detection/Tracking In Fig. 1 and
Fig. 4, we show TrIVD’s performance on OD, where we
detect in images as well as videos that contain blurred or oc-
cluded objects (Fig. 1, 5th column; Fig. 4, 2nd column). Fur-
thermore, with our unified cross-dataset classifier by formu-
lating detection/tracking as phrase grounding (Sec. 3.2), we
naturally extend the model’s detection ability to the com-
bined annotated object categories of the three co-trained
datasets (COCO, VID, MOT17). Therefore, in addition to
people, TrIVD also detects other objects (e.g., cars, bi-
cycles, motorcycles) in the street videos from the person-
annotated only MOT17 dataset (Fig. 4, 3rd column).

Since TrIVD predicts object categories based on region-
text alignment instead of class labels, with our grounding-
formulated unified classifier, TrIVD’s detection/tracking
vocabulary could be further scaled up upon pre-training
on larger OD datasets such as Objects365 [86], and on
semantic-rich phrase grounding datasets [58, 110], e.g.,
Flickr30K [80], VG Caption [53]. Our on-going research
focuses on TrIVD’s open-vocabulary abilities to achieve
detecting/tracking in the wild.

4.5. Ablations

We have already explored the effectiveness of our uni-
fied formulation in improving the overall performance by
comparing TrIVDsingle (trained on individual datasets)
with TrIVDmulti (co-trained with multi-dataset, multi-
task learning) in Sec. 4.3. To further demonstrate the im-
portance of the proposed temporal-aware attention mod-
ule (Sec. 3.1) for video OD tasks, we also conduct ablations
on TrIVDsingle regarding the number of video frames
used to aggregate for video OD. Without any temporal-
aware feature aggregation (Nframe = 1) the model reduces
to a frame-by-frame image OD model. As shown in Tab. 4,
with only 2 additional reference frames forwarded in tem-
poral feature fusion, we observe a significant improvement
on TrIVDsingle’s performance. Overall, a temporal length
of 7 for input video clip achieves the best video OD perfor-
mance, while continuing to increase the number of aggre-
gated frames does not bring obvious gains further. More
experimental results are provided in Appendix B.



5. Conclusion
We introduced TrIVD which performs image object de-

tection, video object detection, and multi-object tracking
within a unified framework. We unified image and video
inputs with spatial-temporal-aware deep feature fusion, and
connected image-video detection with tracking via self-
attention. Our unified classifier based on region-text align-
ment naturally extends the detection/tracking vocabulary
of TrIVD and enables zero-shot tracking. We hope this
work brings deeper insights and reveals greater power of
the multi-task learning for image-video object detection and
multi-object tracking.
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Häusser, Caner Hazirbas, Vladimir Golkov, Patrick van der
Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In
2015 IEEE International Conference on Computer Vision
(ICCV), pages 2758–2766, 2015. 3

[26] David Eigen and Rob Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale convo-
lutional architecture. 2015 IEEE International Conference
on Computer Vision (ICCV), pages 2650–2658, 2015. 3

[27] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichten-
hofer. Multiscale vision transformers. In ICCV, 2021. 3, 6,
14

[28] Golnaz Ghiasi, Barret Zoph, Ekin Dogus Cubuk, Quoc V.
Le, and Tsung-Yi Lin. Multi-task self-training for learn-
ing general representations. 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 8836–8845,
2021. 3

[29] Rohit Girdhar, Mannat Singh, Nikhila Ravi, Laurens
van der Maaten, Armand Joulin, and Ishan Misra. Om-
nivore: A Single Model for Many Visual Modalities. In
CVPR, 2022. 4, 5

[30] Ross Girshick. Fast r-cnn. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 1440–1448,
2015. 2, 7

[31] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition, pages 580–
587, 2014. 2

[32] Yunchao Gong, Liwei Wang, Micah Hodosh, J. Hocken-
maier, and Svetlana Lazebnik. Improving image-sentence
embeddings using large weakly annotated photo collec-
tions. In ECCV, 2014. 3

[33] Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui.
Open-vocabulary object detection via vision and language
knowledge distillation. In International Conference on
Learning Representations, 2022. 2, 3

[34] Chaoxu Guo, Bin Fan, Jie Gu, Q. Zhang, Shiming Xi-
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Bottom-up object detection by grouping extreme and center
points. In CVPR, 2019. 2

[119] Xizhou Zhu, Jifeng Dai, Lu Yuan, and Yichen Wei. To-
wards high performance video object detection. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018. 2, 3

[120] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transform-
ers for end-to-end object detection. In arXiv preprint
arXiv:2010.04159, 2020. 2, 3, 5, 6, 7, 14



A Unified Model for Tracking and
Image-Video Detection Has More Power

(Appendix)

This section provides: 1) more implementation details
and training recipes for TrIVD (Appendix A); 2) additional
experimental results (Appendix B).

A. Additional Implementation Details
A.1. Backbone Pre-training

For the MViTv2-s [60] backbone training, we follow the
same recipe as in [27, 60, 67]. Specifically, we pre-train
MViTv2-s on ImageNet-21K [22] for 300 epochs with
batch size of 32. We use the truncated normal distribu-
tion initialization [38] and synchronized AdamW [68] opti-
mization, with a base learning rate of 2×10−3 and a linear
warm-up in the first 70 epochs followed by a decayed half-
period cosine schedule [95]. We set the weight decay to
0.05. We also use stochastic depth [44] with rate as 0.1.
The augmentation strategies are the same as in [27, 60].

A.2. Text Encoder

We follow [47] and use the HuggingFace [101] pre-
trained RoBERTa-base [66] as our text encoder. In all the
experiments, we use a linear decay with warm-up schedule,
increasing linearly to 5×10−5 during the first 1% of the to-
tal number of iterations, then decreasing linearly back to 0
for the rest of the training.

A.3. Single-dataset Training

For the single-dataset training of TrIVDsingle, we fine-
tune the pre-trained model from Appendix A.1 on the down-
stream object detection and multi-object tracking tasks re-
spectively.

COCO Image Object Detection For image object detec-
tion experiments on COCO [64], we follow the 3×schedule
(36 epochs) suggested in [60]. We set the batch size as 2
with an initial learning rate of 10−4 for deformable DETR
encoder-decoder, and 10−5 for the backbone. The learning
schedule for the text encoder is detailed in Appendix A.2.

VID Video Object Detection For video object detec-
tion experiments on VID [84], we follow the previous
work [23, 97, 104, 106] and include DET [85] dataset in the
pre-training stage. Then, we train our model on VID [84]
with batch size as 1 for 3 epochs. The initial learning rate
for deformable DETR is 5 × 10−4, and 5 × 10−5 for the
backbone. The learning schedule for the text encoder is de-
tailed in Appendix A.2.

MOT17 Multi-object Tracking For multi-object track-
ing experiments on MOT17 [73], we initialize the model
weights from the model trained on COCO [64] as described
in Appendix A.3. We train our model on MOT17 [73] with
a batch size of 2 for 50 epochs with a learning rate drop
to 0.1× after 30 epochs. The initial learning rate for de-
formable DETR is 5×10−4, and 5×10−5 for the backbone.
The learning schedule for the text encoder is detailed in Ap-
pendix A.2.

A.4. Cross-dataset Co-training

For the joint training of TrIVDmulti on all the three
datasets (COCO, VID, MOT), we initialize the model weights
from the model trained on COCO [64] as in Appendix A.3.
We then co-train our model on the combined dataset of
COCO, VID and MOT with a batch size of 1 for 120 epochs
with a learning rate drop to ×0.1 after 80 epochs. The initial
learning rate for deformable DETR is 10−4, and 10−5 for
the backbone. The learning schedule for the text encoder is
detailed in Appendix A.2.

To handle the different tasks (image object detection,
video object detection, or multi-object tracking) for sam-
ples from different datasets, we separate samples from the
three datasets in each forward pass. To balance the vary-
ing scales of different datasets, we randomly select 20,000
video clip samples from VID [84] in each training epoch.

A.5. Track Initialization and Re-identification

New objects appearing in the current frame compared
to previous frames are detected by a fixed number of
Nbox = 500 object queries [120], each attends to certain
spatial locations in the current frame [120]. Given the
object encodings, the deformable-DETR transformer de-
coder’s self-attention intrinsically avoids duplicate detec-
tions [12, 71, 120]. For the tracking purpose, each newly
detected objects will also initialize a new track query with
its associated object embedding [71]. Track queries then
follow the corresponding objects based on their embeddings
throughout a video and adapt to the position changes simul-
taneously. Depends on the objects status in the given video
sequences, the number of track queries Ntrack could change
across frames each time when new objects are detected or
previously-detected tracks disappear or are occluded. Fol-
lowing [71], we remove a detection/track when its classifi-
cation confidence score drops below σtrack = 0.4, or is lower
than an IoU threshold σNMS = 0.9 for non-maximum sup-
pression (NMS).

During tracking inference, we use previously proposed
track queries for an attention-based re-identification pro-
cess. We follow [71] and keep previously removed track
queries within an optimal inactive patience of Nreid = 5
frames, during which the track queries are considered as
not active and thus are not used in the object queries initial-



ization of new frames, unless a classification score higher
than σreid = 0.4 triggers the re-identification.

A.6. Track Filtering

Typical tracking-by-detection methods [16,42,50,51,56,
57] perform data association on a bounding box level dur-
ing tracking evaluations. Yet this strategy is not suitable for
tracking-by-attention or point-based methods [71, 116]. To
achieve a fairer comparison, we follow [71] and perform the
track filtering on Intersection over Union (IoU) and initial-
ize tracks with IoU greater than 0.5.

A.7. Evaluation Metrics for Multi-object Tracking

We provide brief definitions of the seven evaluation met-
rics used for MOT comparisons (Sec. 4.3) in the main paper.
For more complete analyses on different metrics for multi-
object tracking, please also refer to [73, 83].

False Negative (FN) refers to the number of false nega-
tive ground truth bounding boxes that are not covered by
any bounding box.

False Positive (FP) refers to the number of false positive
bounding boxes that do not correspond to any ground truth
object.

Multiple Object Tracking Accuracy (MOTA) penalizes
detection errors (FN + FP) and fragmentations (Φ) normal-
ized by the total number N of true detections:

MOTA = 1− FN+FP+Φ

N
. (A.6)

IDF1 is defined as the ratio between the correctly identi-
fied detections and the average number of ground truth ob-
jects and computed detections:

IDF1 =
2IDTP

2IDTP+ IDFP+ IDFN
, (A.7)

where IDP refers to the identification precision. And IDTP,
IDFP, IDFN are the true positive, false positive, and false
negative of IDP respectively.

Mostly Tracked (MT) denotes the number of tracks that
are successfully tracked for larger than 80% of its total span.

Mostly Lost (ML) denotes the number of tracks that are
successfully tracked for less than 20% of its total length.

Identity Switch (IDS) counts the number of mismatches
of a ground truth object that is originally identified as track
i but assigned to another track j (i ̸= j) in the following
frames.

COCO [64] VID [84] MOT17 [73]

Figure A.5. TrIVD’s object detection results on COCO, VID,
and MOT17. With multi-dataset co-training, TrIVD detects ob-
jects (e.g., traffic lights, bicycles, motorcycles) not annotated by
MOT17 (3rd column).

B. Additional Experimental Results
B.1. Zero-shot Multi-object Tracking

In Fig. A.6 and Fig. A.7, we present more complete zero-
shot multi-object tracking results from TrIVD, in addition
to Fig. 1 and Fig. 3 in the main paper.

B.2. Cross-dataset Detection

We provide more cross-dataset detection results in
Fig. A.5 on all the three experimented datasets (COCO [64],
VID [84], MOT [73]) in addition to Fig. 1 and Fig. 4 in the
main paper.
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Figure A.6. Visualizations on TrIVD’s zero-shot multi-class, multi-object tracking performance (Sec. 4.4). All the above videos are from
VID [84] where no tracking annotation is available.
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Figure A.7. Visualizations on TrIVD’s zero-shot multi-class, multi-object tracking performance (Sec. 4.4). All the above videos are from
VID [84] where no tracking annotation is available. In the last column, we show a failure case where the model recognizes the “blue-box”
bicycle as a new track (“green-box”) when it re-enters the scene, due to the significant pose and camera view changes.


